Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T15:02:14.464Z Has data issue: false hasContentIssue false

Cosmological Parameter Survey Using the Gravitational Lensing Method

Published online by Cambridge University Press:  05 March 2013

Premana W. Premadi
Affiliation:
Department of Astronomy and Bosscha Observatory, Institut Teknologi Bandung, Indonesia; premadi@as.itb.ac.id
Hugo Martel
Affiliation:
Department of Astronomy, University of Texas, Austin, USA; hugo@simplicio.as.utexas.edu
Richard Matzner
Affiliation:
Center for Relativity, Department of Physics, University of Texas, Austin, USA; richard@ricci.ph.utexas.edu
Toshifumi Futamase
Affiliation:
Astronomical Institute, Tohoku University, Sendai, Japan; tof@astr.tohoku.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a multiple-lens plane algorithm, we study light propagation in inhomogeneous universes for 43 different COBE-normalized Cold Dark Matter models, with various values of the density parameter Ω0, cosmological constant λ0, Hubble constant H0, and rms density fluctuation σ8.We performed a total of 3798 experiments, each experiment consisting of propagating a square beam of angular size 21.9″ 21.9″ composed of 116 281 light rays from the observer up to redshift z = 3. These experiments provide statistics of the magnification, shear, and multiple imaging of distant sources. The results of these experiments might be compared with observations, and eventually help constrain the possible values of the cosmological parameters. Additionally, they provide insight into the gravitational lensing process and its complex relationship with the various cosmological parameters.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Barber, A. J., Thomas, P. A., Couchman, H. M. P., & Fluke, C. J. 2000, MNRAS, 319, 267 CrossRefGoogle Scholar
Chiba, M., & Yoshii, Y. 1999, ApJ, 510, 42 Google Scholar
Falco, E. E., Kochanek, C. S., & Muñoz, J. A. 1998, ApJ, 494, 47 Google Scholar
Fukugita, M., Futamase, T., & Kasai, M. 1990, MNRAS, 246, 24P Google Scholar
Jaroszyński, M. 1992, MNRAS, 255, 655 Google Scholar
Kundić, T., et al. 1997, ApJ, 482, 75 CrossRefGoogle Scholar
Martel, H., Premadi, P., & Matzner, R. 1998, ApJ, 497, 512 CrossRefGoogle Scholar
Martínez-González, E., Sanz, J. L., & Cayón, L. 1997, ApJ, 484, 1 CrossRefGoogle Scholar
Premadi, P., Martel, H., & Matzner, R. 1998, ApJ, 493, 10 Google Scholar
Premadi, P., Martel, H., Matzner, R., & Futamase, T. 2001, ApJS, in press (astro-ph/0101359)Google Scholar
Schneider, P., Ehlers, L., & Falco, E. E. 1992, Gravitational Lenses (Berlin: Springer-Verlag)Google Scholar
Turner, E. L. 1990, ApJ, 365, L43 CrossRefGoogle Scholar
Wambsganss, J., Cen, R., Xu, G., & Ostriker, J. P. 1997, ApJ, 475, L81 CrossRefGoogle Scholar