Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T00:14:28.077Z Has data issue: false hasContentIssue false

Serotonin and early life stress interact to shape brain architecture and anxious avoidant behavior – a TPH2 imaging genetics approach

Published online by Cambridge University Press:  28 September 2020

Congcong Liu
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Lei Xu
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Jialin Li
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Feng Zhou
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Xi Yang
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Xiaoxiao Zheng
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Meina Fu
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Keshuang Li
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Cornelia Sindermann
Affiliation:
Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89081Ulm, Germany
Christian Montag
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89081Ulm, Germany
Yina Ma
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute of Brain Research, Beijing Normal University, 100875Beijing, China
Dirk Scheele
Affiliation:
Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53105Bonn, Germany Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, 26129Oldenburg, Germany
Richard P. Ebstein
Affiliation:
School of Management, Zhejiang University of Technology, 310023Hangzhou, China China Center for Behavior Economics and Finance, South Western University of Finance and Economics (SWUFE), 611130, Chengdu, China
Shuxia Yao
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Keith M. Kendrick
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
Benjamin Becker*
Affiliation:
The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731Chengdu, China
*
Author for correspondence: Benjamin Becker, E-mail: ben_becker@gmx.de

Abstract

Background

Early life stress has been associated with emotional dysregulations and altered architecture of limbic-prefrontal brain systems engaged in emotional processing. Serotonin regulates both, developmental and experience-dependent neuroplasticity in these circuits. Central serotonergic biosynthesis rates are regulated by Tryptophan hydroxylase 2 (TPH2) and transgenic animal models suggest that TPH2-gene associated differences in serotonergic signaling mediate the impact of aversive early life experiences on a phenotype characterized by anxious avoidance.

Methods

The present study employed an imaging genetics approach that capitalized on individual differences in a TPH2 polymorphism (703G/T; rs4570625) to determine whether differences in serotonergic signaling modulate the effects of early life stress on brain structure and function and punishment sensitivity in humans (n = 252).

Results

Higher maltreatment exposure before the age of 16 was associated with increased gray matter volumes in a circuitry spanning thalamic-limbic-prefrontal regions and decreased intrinsic communication in limbic-prefrontal circuits selectively in TT carriers. In an independent replication sample, associations between higher early life stress and increased frontal volumes in TT carriers were confirmed. On the phenotype level, the genotype moderated the association between higher early life stress exposure and higher punishment sensitivity. In TT carriers, the association between higher early life stress exposure and punishment sensitivity was critically mediated by increased thalamic-limbic-prefrontal volumes.

Conclusions

The present findings suggest that early life stress shapes the neural organization of the limbic-prefrontal circuits in interaction with individual variations in the TPH2 gene to promote a phenotype characterized by facilitated threat avoidance, thus promoting early adaptation to an adverse environment.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, C., & Parcet, M. A. (2000). The role of Gray's impulsivity in anxiety-mediated differences in resistance to extinction. European Journal of Personality, 14, 185198. doi: 10.1002/1099-0984(200005/06)14:3<185::AID-PER370>3.0.CO;2-U.3.0.CO;2-U>CrossRefGoogle Scholar
Avinun, R., Nevo, A., Knodt, A. R., Elliott, M. L., & Hariri, A. R. (2018). Replication in imaging genetics: The case of threat-related amygdala reactivity. Biological Psychiatry, 84, 148159. doi: 10.1016/j.biopsych.2017.11.010.CrossRefGoogle ScholarPubMed
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Desmond, D. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child abuse & neglect, 27, 169190. doi: 10.1016/S0145-2134(02)00541-0.CrossRefGoogle ScholarPubMed
Birn, R. M., Roeber, B. J., & Pollak, S. D. (2017). Early childhood stress exposure, reward pathways, and adult decision making. Proceedings of the National Academy of Sciences, 114, 1354913554. doi: 10.1073/pnas.1708791114.CrossRefGoogle ScholarPubMed
Booij, L., Turecki, G., Leyton, M., Gravel, P., Lopez De Lara, C., Diksic, M., & Benkelfat, C. (2012). Tryptophan hydroxylase(2) gene polymorphisms predict brain serotonin synthesis in the orbitofrontal cortex in humans. Molecular Psychiatry, 17, 809817. doi: 10.1038/mp.2011.79.CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Pantelis, C., & Yucel, M. (2012). Gray matter abnormalities in Major Depressive Disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138, 918. doi: 10.1016/j.jad.2011.03.049.CrossRefGoogle ScholarPubMed
Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2019). No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. American Journal of Psychiatry, 176, 376387. doi: 10.1176/appi.ajp.2018.18070881.CrossRefGoogle ScholarPubMed
Cacciaglia, R., Nees, F., Grimm, O., Ridder, S., Pohlack, S. T., Diener, S. J., … Flor, H. (2017). Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology. Psychoneuroendocrinology, 76, 1928. doi: 10.1016/j.psyneuen.2016.11.012.CrossRefGoogle ScholarPubMed
Canli, T., Congdon, E., Gutknecht, L., Constable, R. T., & Lesch, K. P. (2005). Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. Journal of Neural Transmission, 112, 14791485. doi: 10.1007/s00702-005-0391-4.CrossRefGoogle ScholarPubMed
Canli, T., Congdon, E., Todd Constable, R., & Lesch, K. P. (2008). Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on neural correlates of affective processing. Biological Psychology, 79, 118125. doi: 10.1016/j.biopsycho.2008.01.004.CrossRefGoogle ScholarPubMed
Carter, C. S., Bearden, C. E., Bullmore, E. T., Geschwind, D. H., Glahn, D. C., Gur, R. E., … Weinberger, D. R. (2017). Enhancing the informativeness and replicability of imaging genomics studies. Biological Psychiatry, 82, 157164. doi: 10.1016/j.biopsych.2016.08.019.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (pp. 2026). Hillsdale, NJ: Lawrence Earlbaum Associates.Google Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396. doi: 10.2307/2136404.CrossRefGoogle ScholarPubMed
Culverhouse, R. C., Saccone, N. L., & Bierut, L. J. (2018). The state of knowledge about the relationship between 5-HTTLPR, stress, and depression. Journal of Affective Disorders, 228, 205206. doi: 10.1016/j.jad.2017.12.002.CrossRefGoogle ScholarPubMed
Dannlowski, U., Kugel, H., Grotegerd, D., Redlich, R., Opel, N., Dohm, K., … Baune, B. T. (2016). Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biological Psychiatry, 80, 398405. doi: 10.1016/j.biopsych.2015.12.010.CrossRefGoogle ScholarPubMed
Dannlowski, U., Kugel, H., Huber, F., Stuhrmann, A., Redlich, R., Grotegerd, D., … Suslow, T. (2013). Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Human Brain Mapping, 34, 28992909. doi: 10.1002/hbm.22112.CrossRefGoogle ScholarPubMed
Forssman, L., Peltola, M. J., Yrttiaho, S., Puura, K., Mononen, N., Lehtimäki, T., & Leppänen, J. M. (2014). Regulatory variant of the TPH 2 gene and early life stress are associated with heightened attention to social signals of fear in infants. Journal of Child Psychology And Psychiatry, 55, 793801. doi: 10.1111/jcpp.12181.CrossRefGoogle Scholar
Frodl, T., Skokauskas, N., Frey, E. M., Morris, D., Gill, M., & Carballedo, A. (2014). BDNF V al66M et genotype interacts with childhood adversity and influences the formation of hippocampal subfields. Human Brain Mapping, 35, 57765783. doi: 10.1002/hbm.22584.CrossRefGoogle Scholar
Fung, B. J., Qi, S., Hassabis, D., Daw, N., & Mobbs, D. (2019). Slow escape decisions are swayed by trait anxiety. Nature Human Behaviour, 3, 702708. doi: 10.1038/s41562-019-0595-5.CrossRefGoogle ScholarPubMed
Furmark, T., Marteinsdottir, I., Frick, A., Heurling, K., Tillfors, M., Appel, L., … Fredrikson, M. (2016). Serotonin synthesis rate and the tryptophan hydroxylase-2: G-703T polymorphism in social anxiety disorder. Journal of Psychopharmacology, 30, 10281035. doi: 10.1177/0269881116648317.CrossRefGoogle ScholarPubMed
Gao, J., Pan, Z., Jiao, Z., Li, F., Zhao, G., Wei, Q., … Evangelou, E. (2012). TPH2 Gene polymorphisms and major depression–a meta-analysis. PloS one, 7, e36721. doi: 10.1371/journal.pone.0036721.CrossRefGoogle ScholarPubMed
Gray, J. A.. (1987). The neuropsychology of emotion and personality. In Stahl, S. M., Iversen, S. D., & Goodman, E. C. (Eds.), Cognitive neurochemistry (pp. 171190). New York, NY, USA: Oxford University Press.Google Scholar
Gray, J., & McNaughton, N.. (2000). Fundamentals of the septo-hippocampal system. In McNaughton, N. (Ed.), The neuropsychology of anxiety: An enquiry into the functions of septo-hippocampal system (2nd ed., pp. 204232). New York, NY, USA: Oxford University Press.Google Scholar
Günther, V., Ihme, K., Kersting, A., Hoffmann, K.-T., Lobsien, D., & Suslow, T. (2018). Volumetric associations between amygdala, nucleus accumbens, and socially anxious tendencies in healthy women. Neuroscience, 374, 2532. doi: 10.1016/j.neuroscience.2018.01.034.CrossRefGoogle ScholarPubMed
Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Muller, J., Zeng, Y., … Lesch, K. P. (2007). Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. International Journal of Neuropsychopharmacology, 10, 309320. doi: 10.1017/s1461145706007437.Google ScholarPubMed
Hartley, C. A., Fischl, B., & Phelps, E. A. (2011). Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear. Cerebral Cortex, 21, 19541962. doi: 10.1093/cercor/bhq253.CrossRefGoogle ScholarPubMed
Ivy, A. S., Rex, C. S., Chen, Y., Dube, C., Maras, P. M., Grigoriadis, D. E., … Baram, T. Z. (2010). Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. Journal of Neuroscience, 30, 1300513015. doi: 10.1523/jneurosci.1784-10.2010.CrossRefGoogle ScholarPubMed
Kaiser, R. H., Clegg, R., Goer, F., Pechtel, P., Beltzer, M., Vitaliano, G., … Pizzagalli, D. A. (2018). Childhood stress, grown-up brain networks: Corticolimbic correlates of threat-related early life stress and adult stress response. Psychological Medicine, 48, 11571166. doi: 10.1017/s0033291717002628.CrossRefGoogle ScholarPubMed
Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neuroscience and Biobehavioral Reviews, 33, 12151226. doi: 10.1016/j.neubiorev.2009.06.003.CrossRefGoogle ScholarPubMed
Kennedy, A. P., Binder, E. B., Bowman, D., Harenski, K., Ely, T., Cisler, J. M., … Kilts, C. D. (2012). A common TPH2 haplotype regulates the neural processing of a cognitive control demand. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 159b, 829840. doi: 10.1002/ajmg.b.32090.CrossRefGoogle ScholarPubMed
Laas, K., Kiive, E., Maestu, J., Vaht, M., Veidebaum, T., & Harro, J. (2017). Nice guys: Homozygocity for the TPH2 −703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. Journal of Affective Disorders, 215, 230236. doi: 10.1016/j.jad.2017.03.045.CrossRefGoogle ScholarPubMed
Lesch, K. P., & Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: Implications for neurodevelopmental disorders. Neuron, 76, 175191. doi: 10.1016/j.neuron.2012.09.013.CrossRefGoogle ScholarPubMed
Li, J., Xu, L., Zheng, X., Fu, M., Zhou, F., Xu, X., … Becker, B. (2019). Common and dissociable contributions of alexithymia and autism to domain-specific interoceptive dysregulations: A dimensional neuroimaging approach. Psychotherapy and Psychosomatics, 88, 187189. doi: 10.1159/000495122.CrossRefGoogle ScholarPubMed
Lin, Y. M., Chao, S. C., Chen, T. M., Lai, T. J., Chen, J. S., & Sun, H. S. (2007). Association of functional polymorphisms of the human tryptophan hydroxylase 2 gene with risk for bipolar disorder in Han Chinese. Archives of General Psychiatry, 64, 10151024. doi: 10.1001/archpsyc.64.9.1015.CrossRefGoogle ScholarPubMed
Maier, A., Gieling, C., Heinen-Ludwig, L., Stefan, V., Schultz, J., Güntürkün, O., … Scheele, D. (2020). Association of childhood maltreatment with interpersonal distance and social touch preferences in adulthood. American Journal of Psychiatry, 177, 3746. doi: 10.1176/appi.ajp.2019.19020212.CrossRefGoogle ScholarPubMed
Mandelli, L., Antypa, N., Nearchou, F. A., Vaiopoulos, C., Stefanis, C. N., Serretti, A., & Stefanis, N. C. (2012). The role of serotonergic genes and environmental stress on the development of depressive symptoms and neuroticism. Journal of Affective Disorders, 142, 8289. doi: 10.1016/j.jad.2012.03.047.CrossRefGoogle ScholarPubMed
Markett, S., de Reus, M. A., Reuter, M., Montag, C., Weber, B., Schoene-Bake, J. C., & van den Heuvel, M. P. (2017). Serotonin and the brain's rich club-association between molecular genetic variation on the TPH2 gene and the structural connectome. Cerebral Cortex (New York, N.Y.: 1991), 27, 21662174. doi: 10.1093/cercor/bhw059.Google ScholarPubMed
Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63, 129151. doi: 10.1146/annurev.psych.121208.131631.CrossRefGoogle ScholarPubMed
Montag, C., Sindermann, C., Melchers, M., Jung, S., Luo, R., Becker, B., … Kendrick, K. M. (2017). A functional polymorphism of the OXTR gene is associated with autistic traits in Caucasian and Asian populations. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 174, 808816. doi: 10.1002/ajmg.b.32596.CrossRefGoogle ScholarPubMed
Ottenhof, K. W., Sild, M., Levesque, M. L., Ruhe, H. G., & Booij, L. (2018). TPH2 Polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 92, 2942. doi: 10.1016/j.neubiorev.2018.05.018.CrossRefGoogle ScholarPubMed
Preacher, K. J., & Hayes, A. F. (2004). SPSS And SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers volume, 36, 717731. doi: 10.3758/BF03206553.CrossRefGoogle ScholarPubMed
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879891. doi: 10.3758/BRM.40.3.879.CrossRefGoogle ScholarPubMed
Ramanathan, K. R., Jin, J., Giustino, T. F., Payne, M. R., & Maren, S. (2018). Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nature Communications, 9, 4527. doi: 10.1038/s41467-018-06970-z.CrossRefGoogle ScholarPubMed
Reuter, M., Esslinger, C., Montag, C., Lis, S., Gallhofer, B., & Kirsch, P. (2008). A functional variant of the tryptophan hydroxylase 2 gene impacts working memory: A genetic imaging study. Biological Psychology, 79, 111117. doi: 10.1016/j.biopsycho.2007.12.002.CrossRefGoogle ScholarPubMed
Reuter, M., Kuepper, Y., & Hennig, J. (2007). Association between a polymorphism in the promoter region of the TPH2 gene and the personality trait of harm avoidance. International Journal of Neuropsychopharmacology, 10, 401404. doi: 10.1017/s1461145706007073.Google ScholarPubMed
Reynolds, G., Askew, C., & Field, A. P.. (2018). Behavioral inhibition and the associative learning of fear. In Pérez-Edgar, K., & Fox, N. (Eds.), Behavioral inhibition (pp. 263282). Cham: Springer.CrossRefGoogle Scholar
Rodrigues, S. M., LeDoux, J. E., & Sapolsky, R. M. (2009). The influence of stress hormones on fear circuitry. Annual Review of Neuroscience, 32, 289313. doi: 10.1146/annurev.neuro.051508.135620.CrossRefGoogle ScholarPubMed
Sachs, B. D., Rodriguiz, R. M., Siesser, W. B., Kenan, A., Royer, E. L., Jacobsen, J. P., … Caron, M. G. (2013). The effects of brain serotonin deficiency on behavioural disinhibition and anxiety-like behaviour following mild early life stress. International Journal of Neuropsychopharmacology, 16, 20812094. doi: 10.1017/s1461145713000321.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J. S., Kennedy, M., Kumsta, R., Knights, N., Golm, D., Rutter, M., … Kreppner, J. (2017). Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: The young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet (London, England), 389, 15391548. doi: 10.1016/s0140-6736(17)30045-4.CrossRefGoogle Scholar
Spengler, F. B., Becker, B., Kendrick, K. M., Conrad, R., Hurlemann, R., & Schade, G. (2017). Emotional dysregulation in psychogenic voice loss. Psychotherapy and Psychosomatics, 86, 121123. doi: 10.1159/000452306.CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17, 652666. doi: 10.1038/nrn.2016.111.CrossRefGoogle ScholarPubMed
Torrubia, R., Avila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions. Personality and Individual Differences, 31, 837862. doi: 10.1016/S0191-8869(00)00183-5.CrossRefGoogle Scholar
van Velzen, L. S., Schmaal, L., Jansen, R., Milaneschi, Y., Opmeer, E. M., Elzinga, B. M., … Penninx, B. W. (2016). Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology. Social Cognitive and Affective Neuroscience, 11, 18411852. doi: 10.1093/scan/nsw086.CrossRefGoogle ScholarPubMed
Waider, J., Popp, S., Mlinar, B., Montalbano, A., Bonfiglio, F., Aboagye, B., … Lesch, K. P. (2019). Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity. Frontiers in Neuroscience, 13, 245. doi: 10.3389/fnins.2019.00245.CrossRefGoogle ScholarPubMed
White, M. G., Bogdan, R., Fisher, P. M., Munoz, K. E., Williamson, D. E., & Hariri, A. R. (2012). FKBP5 And emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain and Behavior, 11, 869878. doi: 10.1111/j.1601-183X.2012.00837.x.CrossRefGoogle ScholarPubMed
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381397.CrossRefGoogle ScholarPubMed
Yang, X. D., Liao, X. M., Uribe-Marino, A., Liu, R., Xie, X. M., Jia, J., … Si, T. M. (2015). Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology, 40, 12031215. doi: 10.1038/npp.2014.304.CrossRefGoogle ScholarPubMed
Zhang, X., Beaulieu, J.-M., Sotnikova, T. D., Gainetdinov, R. R., & Caron, M. G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science (New York, N.Y.), 305, 217217. doi: 10.1126/science.1097540.CrossRefGoogle ScholarPubMed
Zhao, Z., Yao, S., Li, K., Sindermann, C., Zhou, F., Zhao, W., … Kendrick, K. M. (2019). Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychotherapy and Psychosomatics, 88, 515. doi: 10.1159/000496057.CrossRefGoogle ScholarPubMed
Zilverstand, A., Parvaz, M. A., & Goldstein, R. Z. (2017). Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage, 151, 105116. doi: 10.1016/j.neuroimage.CrossRefGoogle ScholarPubMed
Zimmermann, K., Walz, C., Derckx, R. T., Kendrick, K. M., Weber, B., Dore, B., … Becker, B. (2017). Emotion regulation deficits in regular marijuana users. Human Brain Mapping, 38, 42704279. doi: 10.1002/hbm.23671.CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material

Download Liu et al. supplementary material(File)
File 450.7 KB