Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:11:12.165Z Has data issue: false hasContentIssue false

The nucleus accumbens–possible site of antipsychotic action of neuroleptic drugs?

Published online by Cambridge University Press:  09 July 2009

T. J. Crow*
Affiliation:
Division of Psychiatry, Clinical Research Centre and Division of Physiology and Pharmacology, National Institute for Medical Research, London
J. F. W. Deakin
Affiliation:
Division of Psychiatry, Clinical Research Centre and Division of Physiology and Pharmacology, National Institute for Medical Research, London
A. Longden
Affiliation:
Division of Psychiatry, Clinical Research Centre and Division of Physiology and Pharmacology, National Institute for Medical Research, London
*
1Address for correspondence: Dr T. J. Crow, Division of Psychiatry, Clinical Research centre, Northwick Park Hospital, Watford Rd, Harrow, Middx HA1 3UJ

Synopsis

The hypothesis that neuroleptic drugs exert their therapeutic effects by blocking dopaminergic transmission has been investigated by examining the effects of 3 neuroleptic drugs on dopamine turnover in 2 dopaminergically innervated regions of brain – the neostriatum and nucleus accumbens. The drugs chlorpromazine, thioridazine and fluphenazine, known to be therapeutically active in the treatment of schizophrenia, but to have differing incidences of extrapyramidal side effects, were administered to rats in dose ratios approximating to those effective in man. All 3 drugs induced a similar rise in the content of the dopamine metabolite homovanillic acid (HVA) in the nucleus accumbens, whilst the changes in HVA observed in the neostriatum were in the rank order in which these drugs produce extrapyramidal side effects. While the concentrations of dopamine metabolites in the frontal cortex were too low to assess the possibility that neuroleptic drugs have actions at this level, our results are consistent with the hypothesis that these drugs exert their therapeutic effects by dopamine receptor blockade in the nucleus accumbens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aghajanian, G. K. & Bunney, B. S. (1973). Central dopaminergic neurons: neurophysiological identification and response to drugs. In Frontiers in Catecholamine Research (ed. Usdin, E. and Snyder, S. H.), pp. 643648. Pergamon Press: New York.CrossRefGoogle Scholar
Andén, N.-E. (1972). Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. Journal of Pharmacy and Pharmacology 24, 905906.CrossRefGoogle ScholarPubMed
Andén, N.-E. (1974). Effects of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and the limbic system. Journal of Pharmacy and Pharmacology 26, 738740.CrossRefGoogle ScholarPubMed
Andén, N.-E. & Stock, G. (1973). Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. Journal of Pharmacy and Pharmacology 25, 346348.CrossRefGoogle ScholarPubMed
Andén, N.-E., Roos, B.-E. & Werdinius, B. (1964). Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sciences 3, 149158.CrossRefGoogle Scholar
Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L. & Ungerstedt, U. (1966). Ascending monoamine neurones to the telencephalon and diencephalon. Acta Physiologica Scandinavica 67, 313326.CrossRefGoogle Scholar
Arbuthnott, G. W. & Crow, T.J. (1971). The relationship between turning behaviour and unilateral release of dopamine in the rat. Experimental Neurology 30, 484491.CrossRefGoogle Scholar
Bishop, M. P., Gallant, D. M. & Sykes, T. F. (1965). Extrapyramidal side effects and therapeutic response. Archives of General Psychiatry 13, 155162.CrossRefGoogle ScholarPubMed
Bowers, M. B. & Rozitis, A. (1974). Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. Journal of Pharmacy and Pharmacology 26, 743745.CrossRefGoogle ScholarPubMed
Bunney, B. S. & Aghajanian, G. K. (1975 a). Antipsychotic drugs and central dopaminergic neurons: a model for predicting therapeutic efficacy and incidence of extrapyramidal side effects. In Predictability in Psychopharmacology (ed. Sudilovsky, A., Gershon, S. and Beer, B.), pp. 225245. Raven Press: New York.Google Scholar
Bunney, B. S. & Aghajanian, G. K. (1975 b). The effect of antipsychotic drugs on the firing rate of dopaminergic neurons: a reappraisal. In Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics (ed. Sedvall, G.), pp. 305318. Pergamon: Oxford.Google Scholar
Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. (1973). Dopaminergic neurones: effect of antipsychotic drugs and amphetamine on single cell activity. Journal of Pharmacology and Experimental Therapeutics 185, 560571.Google ScholarPubMed
Clement-Cormier, Y. C., Parrish, R. G., Petzold, G. L., Kebabian, J. W. & Greengard, P. (1975). Characterisation of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. Journal of Neurochemistry 25, 143149.CrossRefGoogle ScholarPubMed
Cole, J. O. & Clyde, D. J. (1961). Extrapyramidal side effects and clinical response. Revue Canadienne Biologie 20, 565574.Google ScholarPubMed
Connell, P. H. (1958). Amphetamine Psychosis, Maudsley Monograph no. 5. Chapman & Hall: London.Google Scholar
Corrodi, H., Fuxe, K. & Lidbrink, P. (1972). Interaction between cholinergic and catecholaminergic neurons in rat brain. Brain Research 43, 397416.CrossRefGoogle ScholarPubMed
Coyle, J. T. & Snyder, S. H. (1969). Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science 166, 899901.CrossRefGoogle ScholarPubMed
Crow, T.J. & Gillbe, C. (1975). Brain dopamine and behaviour. A critical analysis of the relationship between dopamine antagonism and therapeutic efficacy of neuroleptic drugs. Journal of Psychiatric Research 11, 163172.CrossRefGoogle Scholar
Crow, T. J. & Grove-White, I. C. (1973). An analysis of the learning deficit following hyoscine administration to man. British Journal of Pharmacology 49, 322327.CrossRefGoogle ScholarPubMed
Crow, T. J., Johnstone, E. C. & McClelland, H. A. (1976). The coincidence of schizophrenia and Parkinsonism: some neurochemical implications. Psychological Medicine 6, 227233.CrossRefGoogle ScholarPubMed
Glowinski, J. & Iversen, L. L. (1966). Regional studies of catecholamines in the rat brain. I. Disposition of (3H) norepinephrine, (3H) dopamine and (3H) DOPA in various regions of the brain. Journal of Neurochemistry 13, 655669.CrossRefGoogle Scholar
Herman, E. & Pleasure, H. (1963). Clinical evaluation of thioridazine and chlorpromazine in chronic schizophrenia. Diseases of the Nervous System 24, 5459.Google Scholar
Horn, A. S., Cuello, A. C. & Miller, R. J. (1974). Dopamine in the mesolimbic system of the rat brain: endogenous levels and effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. Journal of Neurochemistry 22, 265270.CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (1973). Dopamine in the basal ganglia. Its role and therapeutic implications. British Medical Bulletin 29, 172178.CrossRefGoogle ScholarPubMed
Jacobs, B. L., Wise, W. D. & Taylor, K. M. (1975). Is there a catecholamine-serotonin interaction in the control of locomotor activity? Neuropharmacology 14, 501506.CrossRefGoogle Scholar
Klawans, H. L., Goetz, C. & Westheimer, R. (1972). Pathophysiology of schizophrenia and the striatum. Diseases of the Nervous System 33, 711719.Google ScholarPubMed
Laverty, R. & Sharman, D. F. (1965). Modification by drugs of the metabolism of 3, 4-dihydroxyphenyl ethylamine, noradrenaline and 5-hydroxytryptamine in the brain. British Journal of Pharmacology and Chemotherapy 24, 759772.CrossRefGoogle Scholar
Lindvall, O. & Björklund, A. (1974). The organisation of the ascending catecholamine neuron systems in the rat brain. Acta Physiologica Scandinavica 92, Suppl. 412.Google Scholar
Matthysse, S. (1973). Antipsychotic drug actions: a clue to the neuropathology of schizophrenia. Federation Proceedings 32, 200205.Google Scholar
Miller, R. J. & Hiley, C. R. (1974). Antimuscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature (Land.) 248, 596597.CrossRefGoogle ScholarPubMed
Miller, R. J., Horn, A. S. & Iversen, L. L. (1974). The action of neuroleptic drugs on dopamine-stimulated adenosine-3'5'-monophosphate production in the rat neostriatum and limbic forebrain. Molecular Pharmacology 10, 759766.Google Scholar
Muller, P. & Seeman, P. (1974). Neuroleptics: relation between cataleptic and anti-turning actions, and role of the cholinergic system. Journal of Pharmacy and Pharmacology 26, 981984.CrossRefGoogle ScholarPubMed
Murphy, G. F., Robinson, D. & Sharman, D. F. (1969). The effect of tropolone on the formation of 3, 4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the brain of the mouse. British Journal of Pharmacology 36, 107115.CrossRefGoogle Scholar
NIMH Psychopharmacology Service Center Collaborative Study Group (1964). Phenothiazine treatment in acute schizophrenia. Archives of General Psychiatry 10, 246261.CrossRefGoogle Scholar
O'Keefe, R., Sharman, D. F. & Vogt, M. (1970). Effect of drugs used in psychoses on cerebral dopamine metabolism. British Journal of Pharmacology 38, 287304.CrossRefGoogle Scholar
Randrup, A. & Munkvad, I. (1965). Special antagonism of amphetamine-induced abnormal behaviour. Inhibition of stereotyped activity with increase of some normal activities. Psychopharmacologia 7, 416422.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1966). On the role of catecholamines in the amphetamine excitatory response. Nature (Lond.) 211, 540.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1972). Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomolecular Psychiatry 1, 27.Google Scholar
Roffler-Tarlov, S., Sharman, D. F. & Tegerdine, P. (1971). 3, 4-Dihydroxy-phenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the mouse striatum: a reflection of intra- and extra-neuronal metabolism of dopamine? British Journal of Pharmacology 42, 343351.CrossRefGoogle Scholar
Singh, M. M. & Kay, S. R. (1975). Therapeutic reversal with benztropine in schizophrenics. Journal of Nervous and Mental Disease, 160, 258266.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973). Amphetamine psychosis: a model of schizophrenia mediated by catecholamines. American Journal of Psychiatry 120, 6167.CrossRefGoogle Scholar
Snyder, S. H., Greenberg, D. & Yamamura, H. I. (1974). Antischizophrenic drugs and brain cholinergic receptors. Archives of General Psychiatry 32, 5861.CrossRefGoogle Scholar
Stawartz, R. J., Hill, H., Robinson, S. E., Setler, P., Dingell, J. V. & Sulser, F. (1975). On the significance of the increase in homovanillic acid (HVA) caused by antipsychotic drugs in corpus striatum and limbic forebrain. Psychopharmacologia 43, 125130.CrossRefGoogle Scholar
Stevens, J. R. (1973). An anatomy of schizophrenia. Archives of General Psychiatry 29, 177189.CrossRefGoogle ScholarPubMed
Swanson, L. W. & Cowan, W. M. (1975). A note on the connections and development of the nucleus accumbens. Brain Research 29, 324330.CrossRefGoogle Scholar
Ungerstedt, U. & Arbuthnott, G. W. (1970). Quantitative recording of rotational behaviour in rats after 6-hydroxy dopamine lesions of the nigrostriatal dopamine system. Brain Research 24, 485493.CrossRefGoogle Scholar
Yamamura, H. I. & Snyder, S. H. (1974). Muscarinic cholinergic binding in the rat brain. Proceedings of the National Academy of Sciences (USA) 71, 17251729.CrossRefGoogle ScholarPubMed
Zivkovic, B., Guidotti, A., Revuelta, A. & Costa, E. (1975). Effect of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics 194, 3746.Google ScholarPubMed