Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T15:36:55.444Z Has data issue: false hasContentIssue false

Mindfulness training and exercise differentially impact fear extinction neurocircuitry

Published online by Cambridge University Press:  01 September 2023

Shaked E. Leibovitz
Affiliation:
College of Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
Gunes Sevinc
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Jonathan Greenberg
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Britta Hölzel
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
Tim Gard
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Thomas Calahan
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Mark Vangel
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Scott P. Orr
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Mohammed R. Milad
Affiliation:
Psychiatry Department, New York University Grossman School of Medicine, New York, NY 10016, USA
Sara W. Lazar*
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
*
Corresponding author: Sara W. Lazar; Email: slazar@mgh.harvard.edu

Abstract

Background

The ability to extinguish a maladaptive conditioned fear response is crucial for healthy emotional processing and resiliency to aversive experiences. Therefore, enhancing fear extinction learning has immense potential emotional and health benefits. Mindfulness training enhances both fear conditioning and recall of extinguished fear; however, its effects on fear extinction learning are unknown. Here we investigated the impact of mindfulness training on brain mechanisms associated with fear-extinction learning, compared to an exercise-based program.

Methods

We investigated BOLD activations in response to a previously learned fear-inducing cue during an extinction paradigm, before and after an 8-week mindfulness-based stress reduction program (MBSR, n = 49) or exercise-based stress management education program (n = 27).

Results

The groups exhibited similar reductions in stress, but the MBSR group was uniquely associated with enhanced activation of salience network nodes and increased hippocampal engagement.

Conclusions

Our results suggest that mindfulness training increases attention to anticipatory aversive stimuli, which in turn facilitates decreased aversive subjective responses and enhanced reappraisal of the memory.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandra Kredlow, M., Fenster, R. J., Laurent, E. S., Ressler, K. J., & Phelps, E. A. (2022). Prefrontal cortex, amygdala, and threat processing: Implications for PTSD. Neuropsychopharmacology, 47(1), 247259. https://doi.org/10.1038/s41386-021-01155-7CrossRefGoogle ScholarPubMed
Andersson, J., Jenkinson, M., & Andersson, J. (2007a). Non-linear optimisation FMRIB Technial Report TR 07 JA 1. Retrieved June 5, 2022, from https://www.semanticscholar.org/paper/Non-linear-optimisation-FMRIB-Technial-Report-TR-07-Andersson-Jenkinson/7018dff7b9e2d05f2b43a0fe8b0a3598e2f213f2Google Scholar
Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007b). Non-linear registration aka spatial normalisation FMRIB Technial Report TR07JA2. – ScienceOpen. Retrieved June 5, 2022, from https://www.scienceopen.com/document?vid=13f3b9a9-6e99-4ae7-bea2-c1bf0af8ca6eGoogle Scholar
Barsy, B., Kocsis, K., Magyar, A., Babiczky, Á, Szabó, M., Veres, J. M., … Mátyás, F. (2020). Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nature Neuroscience, 23(5), 625637. https://doi.org/10.1038/s41593-020-0620-zCrossRefGoogle Scholar
Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20(2), 10521063. https://doi.org/10.1016/S1053-8119(03)00435-XCrossRefGoogle Scholar
Borsook, D., Edwards, R., Elman, I., Becerra, L., & Levine, J. (2013). Pain and analgesia: The value of salience circuits. Progress in Neurobiology, 104, 93105. https://doi.org/10.1016/j.pneurobio.2013.02.003CrossRefGoogle ScholarPubMed
Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822848. https://doi.org/10.1037/0022-3514.84.4.822CrossRefGoogle ScholarPubMed
Corcoran, K. A., Desmond, T. J., Frey, K. A., & Maren, S. (2005). Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. Journal of Neuroscience, 25(39), 89788987. https://doi.org/10.1523/JNEUROSCI.2246-05.2005CrossRefGoogle ScholarPubMed
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. https://doi.org/10.1038/nrn2555CrossRefGoogle Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195. https://doi.org/10.1038/nn1176CrossRefGoogle ScholarPubMed
Dalton, M. A., & Maguire, E. A. (2017). The pre/parasubiculum: A hippocampal hub for scene-based cognition? Current Opinion in Behavioral Sciences, 17, 3440. https://doi.org/10.1016/j.cobeha.2017.06.001CrossRefGoogle ScholarPubMed
Doll, A., Hölzel, B. K., Boucard, C. C., Wohlschläger, A. M., & Sorg, C. (2015). Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Frontiers in Human Neuroscience, 9, 461. https://www.frontiersin.org/article/10.3389/fnhum.2015.00461.CrossRefGoogle ScholarPubMed
Farb, N. A. S., Segal, Z. V., & Anderson, A. K. (2013). Mindfulness meditation training alters cortical representations of interoceptive attention. Social Cognitive and Affective Neuroscience, 8(1), 1526. https://doi.org/10.1093/scan/nss066CrossRefGoogle ScholarPubMed
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10(6), 446457. https://doi.org/10.1038/nrn2649CrossRefGoogle ScholarPubMed
Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O., … Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neuroscience & Biobehavioral Reviews, 88, 1625. https://doi.org/10.1016/j.neubiorev.2018.03.002CrossRefGoogle Scholar
Gard, T., Hölzel, B. K., Sack, A. T., Hempel, H., Lazar, S. W., Vaitl, D., & Ott, U. (2012). Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cerebral Cortex, 22(11), 26922702. https://doi.org/10.1093/cercor/bhr352CrossRefGoogle ScholarPubMed
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134(6), 16941709. https://doi.org/10.1093/brain/awr085CrossRefGoogle ScholarPubMed
Golkar, A., Lonsdorf, T. B., Olsson, A., Lindstrom, K. M., Berrebi, J., Fransson, P., … Öhman, A. (2012). Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS ONE, 7(11), e48107. https://doi.org/10.1371/journal.pone.0048107CrossRefGoogle ScholarPubMed
Graham, B. M., & Milad, M. R. (2011). The study of fear extinction: Implications for anxiety disorders. American Journal of Psychiatry, 168(12), 12551265. https://doi.org/10.1176/appi.ajp.2011.11040557CrossRefGoogle Scholar
Grant, J. A., & Zeidan, F. (2019). Employing pain and mindfulness to understand consciousness: A symbiotic relationship. Current Opinion in Psychology, 28, 192197. https://doi.org/10.1016/j.copsyc.2018.12.025CrossRefGoogle ScholarPubMed
Greenberg, J., Romero, V. L., Elkin-Frankston, S., Bezdek, M. A., Schumacher, E. H., & Lazar, S. W. (2019). Reduced interference in working memory following mindfulness training is associated with increases in hippocampal volume. Brain Imaging and Behavior, 13(2), 366376. https://doi.org/10.1007/s11682-018-9858-4CrossRefGoogle ScholarPubMed
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 6372. https://doi.org/10.1016/j.neuroimage.2009.06.060CrossRefGoogle ScholarPubMed
Ham, T., Leff, A., de Boissezon, X., Joffe, A., & Sharp, D. J. (2013). Cognitive control and the salience network: An investigation of error processing and effective connectivity. The Journal of Neuroscience, 33(16), 70917098. https://doi.org/10.1523/JNEUROSCI.4692-12.2013CrossRefGoogle ScholarPubMed
Hoge, E. A., Bui, E., Marques, L., Metcalf, C. A., Morris, L. K., Robinaugh, D. J., … Simon, N. M. (2013). Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: Effects on anxiety and stress reactivity. The Journal of Clinical Psychiatry, 74(8), 786792. https://doi.org/10.4088/JCP.12m08083CrossRefGoogle ScholarPubMed
Hölzel, B. K., Brunsch, V., Gard, T., Greve, D. N., Koch, K., Sorg, C., … Milad, M. R. (2016). Mindfulness-based stress reduction, fear conditioning, and the uncinate fasciculus: A pilot study. Frontiers in Behavioral Neuroscience, 10, 124. https://www.frontiersin.org/article/10.3389/fnbeh.2016.00124.CrossRefGoogle ScholarPubMed
Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011a). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research, 191(1), 3643. https://doi.org/10.1016/j.pscychresns.2010.08.006CrossRefGoogle ScholarPubMed
Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011b). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537559. https://doi.org/10.1177/1745691611419671CrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825841. https://doi.org/10.1016/s1053-8119(02)91132-8CrossRefGoogle ScholarPubMed
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143156. https://doi.org/10.1016/S1361-8415(01)00036-6CrossRefGoogle ScholarPubMed
Kabat-Zinn, J. (2013). Full catastrophe living (Revised Edition): Using the wisdom of your body and mind to face stress, pain, and illness. New York, NY: Random House Publishing Group.Google Scholar
Kilpatrick, L. A., Suyenobu, B. Y., Smith, S. R., Bueller, J. A., Goodman, T., Creswell, J. D., … Naliboff, B. D. (2011). Impact of mindfulness-based stress reduction training on intrinsic brain connectivity. NeuroImage, 56(1), 290298. https://doi.org/10.1016/j.neuroimage.2011.02.034CrossRefGoogle ScholarPubMed
Kwapis, J. L., Jarome, T. J., Lee, J. L., & Helmstetter, F. J. (2015). The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiology of Learning and Memory, 123, 110116. https://doi.org/10.1016/j.nlm.2015.06.007CrossRefGoogle ScholarPubMed
Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., … Fischl, B. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 18931897.CrossRefGoogle ScholarPubMed
Ledergerber, D., & Moser, E. I. (2017). Memory retrieval: Taking the route via subiculum. Current Biology: CB, 27(22), R1225R1227. https://doi.org/10.1016/j.cub.2017.09.042CrossRefGoogle ScholarPubMed
LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. American Journal of Psychiatry, 173(11), 10831093. https://doi.org/10.1176/appi.ajp.2016.16030353CrossRefGoogle ScholarPubMed
Li, H., Namburi, P., Olson, J. M., Borio, M., Lemieux, M. E., Beyeler, A., … Tye, K. M. (2022). Neurotensin orchestrates valence assignment in the amygdala. Nature, 608(7923), 586592. https://doi.org/10.1038/s41586-022-04964-yCrossRefGoogle ScholarPubMed
Liberzon, I., & Abelson, J. L. (2016). Context processing and the neurobiology of post-traumatic stress disorder. Neuron, 92(1), 1430. https://doi.org/10.1016/j.neuron.2016.09.039CrossRefGoogle ScholarPubMed
Linnman, C., Zeidan, M. A., Furtak, S. C., Pitman, R. K., Quirk, G. J., & Milad, M. R. (2012). Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit. American Journal of Psychiatry, 169(4), 415423. https://doi.org/10.1176/appi.ajp.2011.10121780CrossRefGoogle ScholarPubMed
Lissek, S., Glaubitz, B., Uengoer, M., & Tegenthoff, M. (2013). Hippocampal activation during extinction learning predicts occurrence of the renewal effect in extinction recall. NeuroImage, 81, 131143. https://doi.org/10.1016/j.neuroimage.2013.05.025CrossRefGoogle ScholarPubMed
Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14(6), 417428. https://doi.org/10.1038/nrn3492CrossRefGoogle ScholarPubMed
Milad, M. R., Orr, S. P., Pitman, R. K., & Rauch, S. L. (2005). Context modulation of memory for fear extinction in humans. Psychophysiology, 42(4), 456464. https://doi.org/10.1111/j.1469-8986.2005.00302.xCrossRefGoogle ScholarPubMed
Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., … Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66(12), 10751082. https://doi.org/10.1016/j.biopsych.2009.06.026CrossRefGoogle ScholarPubMed
Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. (2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62(5), 446454. https://doi.org/10.1016/j.biopsych.2006.10.011CrossRefGoogle ScholarPubMed
Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prévost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55. https://www.frontiersin.org/article/10.3389/fnins.2015.00055.CrossRefGoogle ScholarPubMed
Paz-Alonso, P. M., Bunge, S. A., Anderson, M. C., & Ghetti, S. (2013). Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. Journal of Neuroscience, 33(11), 50175026. https://doi.org/10.1523/JNEUROSCI.3459-12.2013CrossRefGoogle ScholarPubMed
Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104. https://www.frontiersin.org/article/10.3389/fnsys.2016.00104.CrossRefGoogle ScholarPubMed
Pickut, B. A., Van Hecke, W., Kerckhofs, E., Mariën, P., Vanneste, S., Cras, P., & Parizel, P. M. (2013). Mindfulness based intervention in Parkinson's disease leads to structural brain changes on MRI: A randomized controlled longitudinal trial. Clinical Neurology and Neurosurgery, 115(12), 24192425. https://doi.org/10.1016/j.clineuro.2013.10.002CrossRefGoogle ScholarPubMed
Robinson, S., & Bucci, D. J. (2012). Fear conditioning is disrupted by damage to the postsubiculum. Hippocampus, 22(6), 14811491. https://doi.org/10.1002/hipo.20987CrossRefGoogle Scholar
Rosen, M. L., Stern, C. E., Michalka, S. W., Devaney, K. J., & Somers, D. C. (2015). Influences of long-term memory-guided attention and stimulus-guided attention on visuospatial representations within human intraparietal sulcus. Journal of Neuroscience, 35(32), 1135811363. https://doi.org/10.1523/JNEUROSCI.1055-15.2015CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Sevinc, G., Greenberg, J., Hölzel, B. K., Gard, T., Calahan, T., Brunsch, V., … Lazar, S. W. (2020). Hippocampal circuits underlie improvements in self-reported anxiety following mindfulness training. Brain and Behavior, 10(9), e01766. https://doi.org/10.1002/brb3.1766CrossRefGoogle ScholarPubMed
Sevinc, G., Hölzel, B. K., Greenberg, J., Gard, T., Brunsch, V., Hashmi, J. A., … Lazar, S. W. (2019). Strengthened hippocampal circuits underlie enhanced retrieval of extinguished fear memories following mindfulness training. Biological Psychiatry, 86(9), 693702. https://doi.org/10.1016/j.biopsych.2019.05.017CrossRefGoogle ScholarPubMed
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143155. https://doi.org/10.1002/hbm.10062CrossRefGoogle ScholarPubMed
Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E., & Quirk, G. J. (2012). Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron, 76(4), 804812. https://doi.org/10.1016/j.neuron.2012.09.028CrossRefGoogle ScholarPubMed
Suarez-Jimenez, B., Albajes-Eizagirre, A., Lazarov, A., Zhu, X., Harrison, B. J., Radua, J., … Fullana, M. A. (2020). Neural signatures of conditioning, extinction learning, and extinction recall in posttraumatic stress disorder: A meta-analysis of functional magnetic resonance imaging studies. Psychological Medicine, 50(9), 14421451. https://doi.org/10.1017/S0033291719001387CrossRefGoogle ScholarPubMed
Taylor, V. A., Roy, M., Chang, L., Gill, L.-N., Mueller, C., & Rainville, P. (2018). Reduced fear-conditioned pain modulation in experienced meditators: A preliminary study. Psychosomatic Medicine, 80(9), 799806. https://doi.org/10.1097/PSY.0000000000000634CrossRefGoogle ScholarPubMed
Treanor, M. (2011). The potential impact of mindfulness on exposure and extinction learning in anxiety disorders. Clinical Psychology Review, 31(4), 617625. https://doi.org/10.1016/j.cpr.2011.02.003CrossRefGoogle ScholarPubMed
Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32(6), 926942. https://doi.org/10.1007/s10548-019-00744-6CrossRefGoogle ScholarPubMed
Wells, R. E., Yeh, G. Y., Kerr, C., Wolkin, J., Davis, R. B., Tan, Y., … Kong, J. (2013). Meditation's impact on default mode network & hippocampus in mild cognitive impairment: A pilot study. Neuroscience Letters, 556, 1519. https://doi.org/10.1016/j.neulet.2013.10.001CrossRefGoogle ScholarPubMed
Wen, Z., Chen, Z. S., & Milad, M. R. (2021). Fear extinction learning modulates large-scale brain connectivity. NeuroImage, 238, 118261. https://doi.org/10.1016/j.neuroimage.2021.118261CrossRefGoogle ScholarPubMed
Wen, Z., Raio, C. M., Pace-Schott, E. F., Lazar, S. W., LeDoux, J. E., Phelps, E. A., & Milad, M. R. (2022a). Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. Proceedings of the National Academy of Sciences of the United States of America, 119(26), e2204066119. https://doi.org/10.1073/pnas.2204066119CrossRefGoogle ScholarPubMed
Wen, Z., Seo, J., Pace-Schott, E. F., & Milad, M. R. (2022b). Abnormal dynamic functional connectivity during fear extinction learning in PTSD and anxiety disorders. Molecular Psychiatry, 27(4), 22162224. https://doi.org/10.1038/s41380-022-01462-5CrossRefGoogle ScholarPubMed
Whittle, N., Fadok, J., MacPherson, K. P., Nguyen, R., Botta, P., Wolff, S. B. E., … Ciocchi, S. (2021). Central amygdala micro-circuits mediate fear extinction. Nature Communications, 12(1), 4156. https://doi.org/10.1038/s41467-021-24068-xCrossRefGoogle ScholarPubMed
Woo, C.-W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 91, 412419. https://doi.org/10.1016/j.neuroimage.2013.12.058CrossRefGoogle ScholarPubMed
Woolrich, M. (2008). Robust group analysis using outlier inference. NeuroImage, 41(2), 286301. https://doi.org/10.1016/j.neuroimage.2008.02.042CrossRefGoogle ScholarPubMed
Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 17321747. https://doi.org/10.1016/j.neuroimage.2003.12.023CrossRefGoogle ScholarPubMed
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage, 14(6), 13701386. https://doi.org/10.1006/nimg.2001.0931CrossRefGoogle ScholarPubMed
Worsley, K. J. (n.d.). Statistical Analysis of Activation Images.Google Scholar
Zamani, A., Carhart-Harris, R., & Christoff, K. (2022). Prefrontal contributions to the stability and variability of thought and conscious experience. Neuropsychopharmacology, 47(1), 329348. https://doi.org/10.1038/s41386-021-01147-7CrossRefGoogle Scholar
Zeidan, F., & Vago, D. R. (2016). Mindfulness meditation–based pain relief: A mechanistic account. Annals of the New York Academy of Sciences, 1373(1), 114127. https://doi.org/10.1111/nyas.13153CrossRefGoogle ScholarPubMed
Zeidman, P., & Maguire, E. A. (2016). Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nature Reviews Neuroscience, 17(3), 173182. https://doi.org/10.1038/nrn.2015.24CrossRefGoogle ScholarPubMed
Supplementary material: File

Leibovitz et al. supplementary material

Leibovitz et al. supplementary material
Download Leibovitz et al. supplementary material(File)
File 698.5 KB