Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T05:11:26.115Z Has data issue: false hasContentIssue false

Gray matter atrophy is constrained by normal structural brain network architecture in depression

Published online by Cambridge University Press:  10 November 2023

Shaoqiang Han
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Keke Fang
Affiliation:
Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
Ruiping Zheng
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Shuying Li
Affiliation:
Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Bingqian Zhou
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Wei Sheng
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
Baohong Wen
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Liang Liu
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Yarui Wei
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Yuan Chen*
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Huafu Chen*
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
Qian Cui*
Affiliation:
School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
Jingliang Cheng*
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
Yong Zhang*
Affiliation:
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
*
Corresponding authors: Yong Zhang; Email: zzuzhangyong2013@163.com; Jingliang Cheng; Email: fccchengjl@zzu.edu.cn; Qian Cui; Email: qiancui26@gmail.com; Huafu Chen; Email: chenhf@uestc.edu.cn; Yuan Chen; Email: chenyuanshizt@163.com
Corresponding authors: Yong Zhang; Email: zzuzhangyong2013@163.com; Jingliang Cheng; Email: fccchengjl@zzu.edu.cn; Qian Cui; Email: qiancui26@gmail.com; Huafu Chen; Email: chenhf@uestc.edu.cn; Yuan Chen; Email: chenyuanshizt@163.com
Corresponding authors: Yong Zhang; Email: zzuzhangyong2013@163.com; Jingliang Cheng; Email: fccchengjl@zzu.edu.cn; Qian Cui; Email: qiancui26@gmail.com; Huafu Chen; Email: chenhf@uestc.edu.cn; Yuan Chen; Email: chenyuanshizt@163.com
Corresponding authors: Yong Zhang; Email: zzuzhangyong2013@163.com; Jingliang Cheng; Email: fccchengjl@zzu.edu.cn; Qian Cui; Email: qiancui26@gmail.com; Huafu Chen; Email: chenhf@uestc.edu.cn; Yuan Chen; Email: chenyuanshizt@163.com
Corresponding authors: Yong Zhang; Email: zzuzhangyong2013@163.com; Jingliang Cheng; Email: fccchengjl@zzu.edu.cn; Qian Cui; Email: qiancui26@gmail.com; Huafu Chen; Email: chenhf@uestc.edu.cn; Yuan Chen; Email: chenyuanshizt@163.com

Abstract

Background

There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression.

Methods

In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis.

Results

In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset.

Conclusions

These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Shaoqiang Han and Keke Fang contributed to the work equally and should be regarded as co- pioneer first authors.

References

Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Review Neuroscience, 14(5), 322336. doi:10.1038/nrn3465CrossRefGoogle ScholarPubMed
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663676. doi:10.1093/cercor/bhs352CrossRefGoogle ScholarPubMed
Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27(8), 11631174. doi:10.1016/j.mri.2009.01.006CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. Neuroimage, 11(6 Pt 1), 805821. doi:10.1006/nimg.2000.0582CrossRefGoogle ScholarPubMed
Beijers, L., Wardenaar, K. J., van Loo, H. M., & Schoevers, R. A. (2019). Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping. Molecular Psychiatry, 24(6), 888900. doi:10.1038/s41380-019-0385-5CrossRefGoogle ScholarPubMed
Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., & Trakoshis, S. (2020). A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder. Communications Biology, 3(1), 486. doi:10.1038/s42003-020-01212-9CrossRefGoogle Scholar
Blank, T. S., & Meyer, B. M. (2022). Brain morphometry and connectivity differs between adolescent- and adult-onset major depressive disorder. Depression and Anxiety, 39(5), 387396. doi:10.1002/da.23254CrossRefGoogle ScholarPubMed
Bondar, J., Caye, A., Chekroud, A. M., & Kieling, C. (2020). Symptom clusters in adolescent depression and differential response to treatment: A secondary analysis of the Treatment for Adolescents with Depression Study randomised trial. The Lancet. Psychiatry, 7(4), 337343. doi:10.1016/s2215-0366(20)30060-2CrossRefGoogle ScholarPubMed
Brown, J. A., Deng, J., Neuhaus, J., Sible, I. J., Sias, A. C., Lee, S. E., … Seeley, W. W. (2019). Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron, 104(5), 856868.e855. doi:10.1016/j.neuron.2019.08.037CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Review Neuroscience, 10(3), 186198. doi:10.1038/nrn2575CrossRefGoogle ScholarPubMed
Chen, Z., Peng, W., Sun, H., Kuang, W., Li, W., Jia, Z., & Gong, Q. (2016). High-field magnetic resonance imaging of structural alterations in first-episode, drug-naive patients with major depressive disorder. Translational Psychiatry, 6(11), e942. doi:10.1038/tp.2016.209CrossRefGoogle ScholarPubMed
Depping, M. S., Wolf, N. D., Vasic, N., Sambataro, F., Hirjak, D., Thomann, P. A., & Wolf, R. C. (2016). Abnormal cerebellar volume in acute and remitted major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 71, 97102. doi:10.1016/j.pnpbp.2016.06.005CrossRefGoogle ScholarPubMed
Dong, D., Guell, X., Genon, S., Wang, Y., Chen, J., Eickhoff, S. B., … Luo, C. (2022). Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology. Neuroimage Clinical, 36, 103176. doi:10.1016/j.nicl.2022.103176CrossRefGoogle ScholarPubMed
Drysdale, A. T., Grosenick, L., & Downar, J. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 2838. doi:10.1038/nm.4246CrossRefGoogle ScholarPubMed
Evans, A. C. (2013). Networks of anatomical covariance. Neuroimage, 80, 489504. doi:10.1016/j.neuroimage.2013.05.054CrossRefGoogle ScholarPubMed
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2016). The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 35083526. doi:10.1093/cercor/bhw157CrossRefGoogle Scholar
Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Review Neuroscience, 16(3), 159172. doi:10.1038/nrn3901CrossRefGoogle ScholarPubMed
Frost, B., & Diamond, M. I. (2010). Prion-like mechanisms in neurodegenerative diseases. Nature Review Neuroscience, 11(3), 155159. doi:10.1038/nrn2786CrossRefGoogle ScholarPubMed
Han, S., Chen, Y., Zheng, R., Li, S., Jiang, Y., Wang, C., … Cheng, J. (2021a). The stage-specifically accelerated brain aging in never-treated first-episode patients with depression. Human Brain Mapping, 42(11), 36563666. doi:10.1002/hbm.25460CrossRefGoogle ScholarPubMed
Han, S., Cui, Q., Zheng, R., Li, S., Zhou, B., Fang, K., … Chen, H. (2023a). Parsing altered gray matter morphology of depression using a framework integrating the normative model and non-negative matrix factorization. Nature Communications, 14(1), 4053. doi:10.1038/s41467-023-39861-zCrossRefGoogle ScholarPubMed
Han, S., He, Z., Duan, X., Tang, Q., Chen, Y., Yang, Y., … Chen, H. (2018). Dysfunctional connectivity between raphe nucleus and subcortical regions presented opposite differences in bipolar disorder and major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 92, 7682 doi:10.1016/j.pnpbp.2018.12.017.CrossRefGoogle ScholarPubMed
Han, S., Xu, Y., Guo, H. R., Fang, K., & Wei, Y. (2022a). Two distinct subtypes of obsessive compulsive disorder revealed by a framework integrating multimodal neuroimaging information. Human Brain Mapping, 43(14), 42544265. doi:10.1002/hbm.25951CrossRefGoogle ScholarPubMed
Han, S., Xu, Y., Guo, H. R., Fang, K., & Wei, Y. (2022b). Two distinct subtypes of obsessive compulsive disorder revealed by heterogeneity through discriminative analysis. Human Brain Mapping, 43(10), 30373046. doi:10.1002/hbm.25833CrossRefGoogle ScholarPubMed
Han, S., Xu, Y., Guo, H. R., Fang, K., Wei, Y., Liu, L., … Cheng, J. (2022c). Resolving heterogeneity in obsessive-compulsive disorder through individualized differential structural covariance network analysis. Cerebral Cortex, 33(5), 16591668. doi:10.1093/cercor/bhac163.CrossRefGoogle Scholar
Han, S., Xu, Y., Guo, H. R., Fang, K., Wei, Y., Liu, L., … Cheng, J. (2023b). Resolving heterogeneity in obsessive-compulsive disorder through individualized differential structural covariance network analysis. Cerebral Cortex, 33(5), 16591668. doi:10.1093/cercor/bhac163CrossRefGoogle ScholarPubMed
Han, S., Xue, K., Chen, Y., Xu, Y., Li, S., Song, X., … Cheng, J. (2023c). Identification of shared and distinct patterns of brain network abnormality across mental disorders through individualized structural covariance network analysis. Psychological Medicine, 112. doi:10.1017/s0033291723000302.Google ScholarPubMed
Han, S., Zheng, R., Li, S., Liu, L., Wang, C., Jiang, Y., … Cheng, J. (2021b). Progressive brain structural abnormality in depression assessed with MR imaging by using causal network analysis. Psychological Medicine, 53(5), 21462155. doi:10.1017/s0033291721003986.CrossRefGoogle ScholarPubMed
Han, S., Zheng, R., Li, S., Zhou, B., Jiang, Y., Fang, K., … Cheng, J. (2022d). Resolving heterogeneity in depression using individualized structural covariance network analysis. Psychological Medicine, 53(5), 21462155. doi:10.1017/s0033291722002380CrossRefGoogle ScholarPubMed
Han, S., Zong, X., Hu, M., Yu, Y., Wang, X., Long, Z., … Chen, H. (2017). Frequency-selective alteration in the resting-state corticostriatal-thalamo-cortical circuit correlates with symptoms severity in first-episode drug-naive patients with schizophrenia. Schizophrenia Research, 189, 175180. doi:10.1016/j.schres.2017.02.019CrossRefGoogle ScholarPubMed
Herzog, D. P., Wagner, S., Engelmann, J., Treccani, G., Dreimüller, N., Müller, M. B., … Lieb, K. (2021). Early onset of depression and treatment outcome in patients with major depressive disorder. Journal of Psychiatric Research, 139, 150158. doi:10.1016/j.jpsychires.2021.05.048CrossRefGoogle ScholarPubMed
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603611. doi:10.1001/jamapsychiatry.2015.0071CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., … Wang, P. S. (2003). The epidemiology of major depressive disorder: Results from the national comorbidity survey replication (NCS-R). Jama, 289(23), 30953105. doi:10.1001/jama.289.23.3095CrossRefGoogle ScholarPubMed
Krishnan, V., & Nestler, E. J. (2008). The molecular neurobiology of depression. Nature, 455(7215), 894902. doi:10.1038/nature07455CrossRefGoogle ScholarPubMed
Larivière, S., Rodríguez-Cruces, R., Royer, J., Caligiuri, M. E., Gambardella, A., Concha, L., … Yasuda, C. (2020). Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study. Science Advances, 6(47), eabc6457. doi:10.1126/sciadv.abc6457.CrossRefGoogle ScholarPubMed
Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2018). Neurobiology of depression: A neurodevelopmental approach. The World Journal of Biological Psychiatry: the Official Journal of the World Federation of Societies of Biological Psychiatry, 19(5), 349359. doi:10.1080/15622975.2017.1289240CrossRefGoogle ScholarPubMed
Liu, Z., Palaniyappan, L., Wu, X., Zhang, K., Du, J., Zhao, Q., … Lin, C. P. (2021). Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: Individualized structural covariance network analysis. Molecular Pychiatry, 26(12), 77197731. doi:10.1038/s41380-021-01229-4CrossRefGoogle ScholarPubMed
Lv, J., Di Biase, M., Cash, R. F. H., & Cocchi, L. (2020). Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Molecular Psychiatry, 26(7), 35123523. doi:10.1038/s41380-020-00882-5CrossRefGoogle Scholar
Lynch, C. J., Gunning, F. M., & Liston, C. (2020). Causes and consequences of diagnostic heterogeneity in depression: Paths to discovering novel biological depression subtypes. Biological Psychiatry, 88(1), 8394. doi:10.1016/j.biopsych.2020.01.012CrossRefGoogle ScholarPubMed
Mai, N., Wu, Y., Zhong, X., Chen, B., Zhang, M., Peng, Q., & Ning, Y. (2021). Different modular organization between early onset and late onset depression: A study base on granger causality analysis. Frontiers in Aging Neuroscience, 13, 625175. doi:10.3389/fnagi.2021.625175CrossRefGoogle ScholarPubMed
Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding heterogeneity in clinical cohorts using normative models: Beyond case–control studies. Biological Psychiatry, 80(7), 552561. doi:10.1016/j.biopsych.2015.12.023CrossRefGoogle ScholarPubMed
Mayblyum, D. V., Becker, J. A., Jacobs, H. I. L., Buckley, R. F., Schultz, A. P., Sepulcre, J., … Hanseeuw, B. J. (2021). Comparing PET and MRI biomarkers predicting cognitive decline in preclinical Alzheimer disease. Neurology, 96(24), e2933e2943. doi:10.1212/wnl.0000000000012108CrossRefGoogle ScholarPubMed
Moberget, T., Doan, N. T., Alnæs, D., Kaufmann, T., Córdova-Palomera, A., Lagerberg, T. V., … Westlye, L. T. (2018). Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: A multisite mega-analysis of 983 patients and 1349 healthy controls. Molecular Psychiatry, 23(6), 15121520. doi:10.1038/mp.2017.106CrossRefGoogle ScholarPubMed
Morris, G., Puri, B. K., Walker, A. J., Maes, M., Carvalho, A. F., Bortolasci, C. C., … Berk, M. (2019). Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 107, 862882. doi:10.1016/j.neubiorev.2019.09.025CrossRefGoogle ScholarPubMed
Nickson, T., Chan, S. W., Papmeyer, M., Romaniuk, L., Macdonald, A., Stewart, T., … Whalley, H. C. (2016). Prospective longitudinal voxel-based morphometry study of major depressive disorder in young individuals at high familial risk. Psychological Medicine, 46(11), 23512361. doi:10.1017/s0033291716000519CrossRefGoogle ScholarPubMed
Petersen, M., Nägele, F. L., Mayer, C., Schell, M., Rimmele, D. L., Petersen, E., … Cheng, B. (2022). Brain network architecture constrains age-related cortical thinning. Neuroimage, 264, 119721. doi:10.1016/j.neuroimage.2022.119721CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 20682079. doi:10.1016/j.neuroimage.2011.03.069CrossRefGoogle ScholarPubMed
Rubinov, M., Ypma, R. J., Watson, C., & Bullmore, E. T. (2015). Wiring cost and topological participation of the mouse brain connectome. Proceedings of the National Academy of Sciences of the United States of America, 112(32), 1003210037. doi:10.1073/pnas.1420315112CrossRefGoogle ScholarPubMed
Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., … Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage, 60(1), 623632. doi:10.1016/j.neuroimage.2011.12.063CrossRefGoogle ScholarPubMed
Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Tiemeier, H. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22(6), 900909. doi:10.1038/mp.2016.60CrossRefGoogle ScholarPubMed
Schmaal, L., Veltman, D. J., van Erp, T. G., Sämann, P. G., Frodl, T., Jahanshad, N., … Tiemeier, H. (2016). Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 21(6), 806812. doi:10.1038/mp.2015.69CrossRefGoogle ScholarPubMed
Shafiei, G., Markello, R. D., Makowski, C., Talpalaru, A., Kirschner, M., Devenyi, G. A., … Mišić, B. (2020). Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biological Psychiatry, 87(8), 727735. doi:10.1016/j.biopsych.2019.09.031CrossRefGoogle ScholarPubMed
Shan, X., Uddin, L. Q., Xiao, J., He, C., Ling, Z., Li, L., … Duan, X. (2022). Mapping the heterogeneous brain structural phenotype of autism spectrum disorder using the normative model. Biological Psychiatry, 91(11), 967976. doi:10.1016/j.biopsych.2022.01.011CrossRefGoogle ScholarPubMed
Sotiras, A., Toledo, J. B., Gur, R. E., Gur, R. C., Satterthwaite, T. D., & Davatzikos, C. (2017). Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 35273532. doi:10.1073/pnas.1620928114CrossRefGoogle ScholarPubMed
Sun, X., Liu, J., Ma, Q., Duan, J., Wang, X., Xu, Y., … Xia, M. (2021). Disrupted intersubject variability architecture in functional connectomes in schizophrenia. Schizophrenia Bulletin, 47(3), 837848. doi:10.1093/schbul/sbaa155CrossRefGoogle ScholarPubMed
Verduijn, J., Milaneschi, Y., Schoevers, R. A., van Hemert, A. M., Beekman, A. T., & Penninx, B. W. (2015). Pathophysiology of major depressive disorder: Mechanisms involved in etiology are not associated with clinical progression. Translational Psychiatry, 5(9), e649. doi:10.1038/tp.2015.137CrossRefGoogle Scholar
Voineskos, A. N., Jacobs, G. R., & Ameis, S. H. (2020). Neuroimaging heterogeneity in psychosis: Neurobiological underpinnings and opportunities for prognostic and therapeutic innovation. Biological Psychiatry, 88(1), 95102. doi:10.1016/j.biopsych.2019.09.004CrossRefGoogle ScholarPubMed
Wang, Y., Dong, D., Chen, X., Gao, X., Liu, Y., Xiao, M., … Chen, H. (2023). Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children. Cerebral Cortex, 33(8), 47944805. doi:10.1093/cercor/bhac380CrossRefGoogle ScholarPubMed
Wannan, C. M. J., Cropley, V. L., Chakravarty, M. M., Bousman, C., Ganella, E. P., Bruggemann, J. M., … Zalesky, A. (2019). Evidence for network-based cortical thickness reductions in schizophrenia. The American Journal of Psychiatry, 176(7), 552563. doi:10.1176/appi.ajp.2019.18040380CrossRefGoogle ScholarPubMed
Warren, J. D., Rohrer, J. D., Schott, J. M., Fox, N. C., Hardy, J., & Rossor, M. N. (2013). Molecular nexopathies: A new paradigm of neurodegenerative disease. Trends in Neurosciences, 36(10), 561569. doi:10.1016/j.tins.2013.06.007CrossRefGoogle ScholarPubMed
Wolfers, T., Doan, N. T., Kaufmann, T., Alnæs, D., Moberget, T., Agartz, I., … Marquand, A. F. (2018). Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry, 75(11), 11461155. doi:10.1001/jamapsychiatry.2018.2467CrossRefGoogle ScholarPubMed
Yau, Y., Zeighami, Y., Baker, T. E., Larcher, K., & Vainik, U. (2018). Network connectivity determines cortical thinning in early Parkinson's disease progression. Nature Communications, 9(1), 12. doi:10.1038/s41467-017-02416-0CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. doi:10.1152/jn.00338.2011Google ScholarPubMed
Yu, M., Linn, K. A., Shinohara, R. T., Oathes, D. J., Cook, P. A., Duprat, R., & Moore, T. M. (2019). Childhood trauma history is linked to abnormal brain connectivity in major depression. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 85828590. doi:10.1073/pnas.1900801116CrossRefGoogle ScholarPubMed
Yun, J. Y., Boedhoe, P. S. W., Vriend, C., Jahanshad, N., Abe, Y., Ameis, S. H., … Kwon, J. S. (2020). Brain structural covariance networks in obsessive-compulsive disorder: A graph analysis from the ENIGMA Consortium. Brain, 143(2), 684700. doi:10.1093/brain/awaa001Google ScholarPubMed
Yun, J. Y., Jang, J. H., Kim, S. N., Jung, W. H., & Kwon, J. S. (2015). Neural correlates of response to pharmacotherapy in obsessive-compulsive disorder: Individualized cortical morphology-based structural covariance. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 63, 126133. doi:10.1016/j.pnpbp.2015.06.009CrossRefGoogle ScholarPubMed
Zeighami, Y., Ulla, M., Iturria-Medina, Y., Dadar, M., Zhang, Y., Larcher, K. M., … Dagher, A. (2015). Network structure of brain atrophy in de novo Parkinson's disease. ELife, 4, e08440. doi:10.7554/eLife.08440CrossRefGoogle ScholarPubMed
Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., & Seeley, W. W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6), 12161227. doi:10.1016/j.neuron.2012.03.004CrossRefGoogle ScholarPubMed
Supplementary material: File

Han et al. supplementary material

Han et al. supplementary material
Download Han et al. supplementary material(File)
File 722.1 KB