Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T14:56:34.466Z Has data issue: false hasContentIssue false

Effects of inflammation, childhood adversity, and psychiatric symptoms on brain morphometrical phenotypes in bipolar II depression

Published online by Cambridge University Press:  06 September 2023

Yuan Cao
Affiliation:
Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
Huan Sun
Affiliation:
Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
Paulo Lizano
Affiliation:
The Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
Gaoju Deng
Affiliation:
Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
Xiaoqin Zhou
Affiliation:
Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
Hongsheng Xie
Affiliation:
Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
Jingshi Mu
Affiliation:
Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
Xipeng Long
Affiliation:
Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
Hongqi Xiao
Affiliation:
Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
Shiyu Liu
Affiliation:
Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
Baolin Wu
Affiliation:
Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
Qiyong Gong
Affiliation:
Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, P.R. China
Changjian Qiu*
Affiliation:
Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
Zhiyun Jia*
Affiliation:
Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
*
Corresponding authors: Changjian Qiu; Email: qiuchangjian@wchscu.cn; Zhiyun Jia; Email: zhiyunjia@hotmail.com
Corresponding authors: Changjian Qiu; Email: qiuchangjian@wchscu.cn; Zhiyun Jia; Email: zhiyunjia@hotmail.com

Abstract

Background

The neuroanatomical alteration in bipolar II depression (BDII-D) and its associations with inflammation, childhood adversity, and psychiatric symptoms are currently unclear. We hypothesize that neuroanatomical deficits will be related to higher inflammation, greater childhood adversity, and worse psychiatric symptoms in BDII-D.

Methods

Voxel- and surface-based morphometry was performed using the CAT toolbox in 150 BDII-D patients and 155 healthy controls (HCs). Partial Pearson correlations followed by multiple comparison correction was used to indicate significant relationships between neuroanatomy and inflammation, childhood adversity, and psychiatric symptoms.

Results

Compared with HCs, the BDII-D group demonstrated significantly smaller gray matter volumes (GMVs) in frontostriatal and fronto-cerebellar area, insula, rectus, and temporal gyrus, while significantly thinner cortices were found in frontal and temporal areas. In BDII-D, smaller GMV in the right middle frontal gyrus (MFG) was correlated with greater sexual abuse (r = −0.348, q < 0.001) while larger GMV in the right orbital MFG was correlated with greater physical neglect (r = 0.254, q = 0.03). Higher WBC count (r = −0.227, q = 0.015) and IL-6 levels (r = −0.266, q = 0.015) was associated with smaller GMVs in fronto-cerebellar area in BDII-D. Greater positive symptoms was correlated with larger GMVs of the left middle temporal pole (r = 0.245, q = 0.03).

Conclusions

Neuroanatomical alterations in frontostriatal and fronto-cerebellar area, insula, rectus, temporal gyrus volumes, and frontal-temporal thickness may reflect a core pathophysiological mechanism of BDII-D, which are related to inflammation, trauma, and psychiatric symptoms in BDII-D.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

American Psychiatric Association, D., & Association, A. P. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5). Washington, DC: American Psychiatric Association.Google Scholar
Bai, Y. M., Su, T. P., Tsai, S. J., Wen-Fei, C., Li, C. T., Pei-Chi, T., & Mu-Hong, C. (2014). Comparison of inflammatory cytokine levels among type I/type II and manic/hypomanic/euthymic/depressive states of bipolar disorder. Journal of Affective Disorders, 166, 187192. doi: 10.1016/j.jad.2014.05.009CrossRefGoogle ScholarPubMed
Bauer, M. E., & Teixeira, A. L. (2019). Inflammation in psychiatric disorders: What comes first? Annals of the New York Academy Science, 1437(1), 5767. doi: 10.1111/nyas.13712CrossRefGoogle ScholarPubMed
Begemann, M. J. H., Schutte, M. J. L., van Dellen, E., Abramovic, L., Boks, M. P., van Haren, N. E., … Sommer, I. E. C. (2023). Childhood trauma is associated with reduced frontal gray matter volume: A large transdiagnostic structural MRI study. Psychological Medicine, 53(3), 741749.CrossRefGoogle ScholarPubMed
Benedetti, F., & Bollettini, I. (2014). Recent findings on the role of white matter pathology in bipolar disorder. Harvard Review of Psychiatry, 22(6), 338341. doi: 10.1097/hrp.0000000000000007CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300.Google Scholar
Cerullo, M. A., Eliassen, J. C., Smith, C. T., Fleck, D. E., Nelson, E. B., Strawn, J. R., … Strakowski, S. M. (2014). Bipolar I disorder and major depressive disorder show similar brain activation during depression. Bipolar Disorders, 16(7), 703712. doi: 10.1111/bdi.12225CrossRefGoogle ScholarPubMed
Chen, M. H., Kao, Z. K., Chang, W. C., Tu, P. C., Hsu, J. W., Huang, K. L., … Bai, Y. M. (2020a). Increased proinflammatory cytokines, executive dysfunction, and reduced gray matter volumes In first-episode bipolar disorder and major depressive disorder. Journal Affective Disorders, 274, 825831. doi: 10.1016/j.jad.2020.05.158CrossRefGoogle ScholarPubMed
Chen, P., Chen, F., Chen, G., Zhong, S., Gong, J., Zhong, H., … Wang, Y. (2020b). Inflammation is associated with decreased functional connectivity of insula in unmedicated bipolar disorder. Brain, Behavior, and Immunity, 89, 615622. doi: 10.1016/j.bbi.2020.07.004CrossRefGoogle ScholarPubMed
Culpepper, L. (2014). Misdiagnosis of bipolar depression in primary care practices. The Journal of Clinical Psychiatry, 75(3), e05. doi: 10.4088/JCP.13019tx1cCrossRefGoogle ScholarPubMed
Duarte, D. G., Neves Mde, C., Albuquerque, M. R., de Souza-Duran, F. L., Busatto, G., & Corrêa, H. (2016). Gray matter brain volumes in childhood-maltreated patients with bipolar disorder type I: A voxel-based morphometric study. Journal of Affective Disorders, 197, 7480. doi: 10.1016/j.jad.2016.02.068CrossRefGoogle Scholar
Fournier, J. C., Chase, H. W., Almeida, J., & Phillips, M. L. (2016). Within- and between-session changes in neural activity during emotion processing in unipolar and bipolar depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(6), 518527. doi: 10.1016/j.bpsc.2016.03.005Google ScholarPubMed
Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry, 21(12), 16961709. doi: 10.1038/mp.2016.3CrossRefGoogle ScholarPubMed
Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. Lancet (London, England), 387(10027), 15611572. doi: 10.1016/s0140-6736(15)00241-xCrossRefGoogle ScholarPubMed
Han, K. M., De Berardis, D., Fornaro, M., & Kim, Y. K. (2019). Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 91, 2027. doi: 10.1016/j.pnpbp.2018.03.022CrossRefGoogle ScholarPubMed
Hassel, S., Almeida, J. R., Kerr, N., Nau, S., Ladouceur, C. D., Fissell, K., … Phillips, M. L. (2008). Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: No associations with psychotropic medication load. Bipolar Disorders, 10(8), 916927. doi: 10.1111/j.1399–5618.2008.00641.xCrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33(6), 693710. doi: 10.1016/j.psyneuen.2008.03.008CrossRefGoogle ScholarPubMed
Hsieh, Y. T., Wu, R., Tseng, H. H., Wei, S. Y., Huang, M. C., Chang, H. H., … Chen, P. S. (2021). Childhood neglect is associated with corticostriatal circuit dysfunction in bipolar disorder adults. Psychiatry Research, 295, 113550. doi: 10.1016/j.psychres.2020.113550CrossRefGoogle ScholarPubMed
Irwin, M. R., & Cole, S. W. (2011). Reciprocal regulation of the neural and innate immune systems. Nature Reviews Immunology, 11(9), 625632. doi: 10.1038/nri3042CrossRefGoogle ScholarPubMed
Jacoby, A. S., Munkholm, K., Vinberg, M., Pedersen, B. K., & Kessing, L. V. (2016). Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder – results from a prospective study. Journal of Affective Disorders, 197, 167174. doi: 10.1016/j.jad.2016.03.040CrossRefGoogle ScholarPubMed
Joslyn, C., Hawes, D. J., Hunt, C., & Mitchell, P. B. (2016). Is age of onset associated with severity, prognosis, and clinical features in bipolar disorder? A meta-analytic review. Bipolar Disorders, 18(5), 389403. doi: 10.1111/bdi.12419CrossRefGoogle ScholarPubMed
Laidi, C., d'Albis, M. A., Wessa, M., Linke, J., Phillips, M. L., Delavest, M., … Houenou, J. (2015). Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatrica Scandinavica, 131(3), 223233. doi: 10.1111/acps.12363CrossRefGoogle ScholarPubMed
Mazza, M. G., Capellazzi, M., Tagliabue, I., Lucchi, S., Rossetti, A., & Clerici, M. (2019). Neutrophil-lymphocyte, monocyte-lymphocyte and platelet-lymphocyte ratio in schizoaffective disorder compared to schizophrenia. General Hospital Psychiatry, 61, 8687. doi: 10.1016/j.genhosppsych.2019.06.013CrossRefGoogle ScholarPubMed
McKay, M. T., Cannon, M., Chambers, D., Conroy, R. M., Coughlan, H., Dodd, P., … Clarke, M. C. (2021). Childhood trauma and adult mental disorder: A systematic review and meta-analysis of longitudinal cohort studies. Acta Psychiatrica Scandinavica, 143(3), 189205. doi: 10.1111/acps.13268CrossRefGoogle ScholarPubMed
Miller, A. H., Haroon, E., Raison, C. L., & Felger, J. C. (2013). Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depression and Anxiety, 30(4), 297306. doi: 10.1002/da.22084CrossRefGoogle ScholarPubMed
Minichino, A., Bersani, F. S., Trabucchi, G., Albano, G., Primavera, M., Delle Chiaie, R., & Biondi, M. (2014). The role of cerebellum in unipolar and bipolar depression: A review of the main neurobiological findings. Rivista di Psichiatria, 49(3), 124131. doi: 10.1708/1551.16907Google ScholarPubMed
Modabbernia, A., Taslimi, S., Brietzke, E., & Ashrafi, M. (2013). Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies. Biological Psychiatry, 74(1), 1525. doi: 10.1016/j.biopsych.2013.01.007CrossRefGoogle ScholarPubMed
Mohite, S., Salem, H., Cordeiro, T., Tannous, J., Mwangi, B., Selvaraj, S., … Teixeira, A. L. (2022). Correlations between peripheral levels of inflammatory mediators and frontolimbic structures in bipolar disorder: An exploratory analysis. CNS Spectrums, 27(5), 639644.CrossRefGoogle ScholarPubMed
Munkholm, K., Braüner, J. V., Kessing, L. V., & Vinberg, M. (2013). Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis. Journal of Psychiatric Research, 47(9), 11191133. doi: 10.1016/j.jpsychires.2013.05.018CrossRefGoogle ScholarPubMed
Nabulsi, L., McPhilemy, G., Kilmartin, L., Whittaker, J. R., Martyn, F. M., Hallahan, B., … Cannon, D. M. (2020). Frontolimbic, frontoparietal, and default mode involvement in functional dysconnectivity in psychotic bipolar disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(2), 140151. doi: 10.1016/j.bpsc.2019.10.015Google ScholarPubMed
Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20(11), 13221331. doi: 10.1111/j.1467-9280.2009.02459.xCrossRefGoogle ScholarPubMed
Palmier-Claus, J. E., Berry, K., Bucci, S., Mansell, W., & Varese, F. (2016). Relationship between childhood adversity and bipolar affective disorder: Systematic review and meta-analysis. The British Journal of Psychiatry: The Journal of Mental Science, 209(6), 454459. doi: 10.1192/bjp.bp.115.179655CrossRefGoogle ScholarPubMed
Phillips, M. L., & Kupfer, D. J. (2013). Bipolar disorder diagnosis: Challenges and future directions. Lancet (London, England), 381(9878), 16631671. doi: 10.1016/s0140-6736(13)60989-7CrossRefGoogle ScholarPubMed
Phillips, M. L., & Swartz, H. A. (2014). A critical appraisal of neuroimaging studies of bipolar disorder: Toward a new conceptualization of underlying neural circuitry and a road map for future research. American Journal of Psychiatry, 171(8), 829843. doi: 10.1176/appi.ajp.2014.13081008CrossRefGoogle Scholar
Poletti, S., Leone, G., Hoogenboezem, T. A., Ghiglino, D., Vai, B., de Wit, H., … Benedetti, F. (2019). Markers of neuroinflammation influence measures of cortical thickness in bipolar depression. Psychiatry Research: Neuroimaging, 285, 6466. doi: 10.1016/j.pscychresns.2019.01.009CrossRefGoogle ScholarPubMed
Poletti, S., Vai, B., Smeraldi, E., Cavallaro, R., Colombo, C., & Benedetti, F. (2016). Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes. Journal of Affective Disorders, 189, 290297. doi: 10.1016/j.jad.2015.09.049CrossRefGoogle ScholarPubMed
Quidé, Y., Bortolasci, C. C., Spolding, B., Kidnapillai, S., Watkeys, O. J., Cohen-Woods, S., … Green, M. J. (2021). Systemic inflammation and grey matter volume in schizophrenia and bipolar disorder: Moderation by childhood trauma severity. Progress in Neuro-psychopharmacology & Biological Psychiatry, 105, 110013. doi: 10.1016/j.pnpbp.2020.110013CrossRefGoogle ScholarPubMed
Redlich, R., Almeida, J. J., Grotegerd, D., Opel, N., Kugel, H., Heindel, W., … Dannlowski, U. (2014). Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry, 71(11), 12221230. doi: 10.1001/jamapsychiatry.2014.1100CrossRefGoogle ScholarPubMed
Rosenblat, J. D., Brietzke, E., Mansur, R. B., Maruschak, N. A., Lee, Y., & McIntyre, R. S. (2015). Inflammation as a neurobiological substrate of cognitive impairment in bipolar disorder: Evidence, pathophysiology and treatment implications. Journal of Affective Disorders, 188, 149159. doi: 10.1016/j.jad.2015.08.058CrossRefGoogle ScholarPubMed
Schubert, M. I., Porkess, M. V., Dashdorj, N., Fone, K. C., & Auer, D. P. (2009). Effects of social isolation rearing on the limbic brain: A combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience, 159(1), 2130. doi: 10.1016/j.neuroscience.2008.12.019CrossRefGoogle Scholar
Solmi, M., Suresh Sharma, M., Osimo, E. F., Fornaro, M., Bortolato, B., Croatto, G., … Carvalho, A. F. (2021). Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain, Behavior, and Immunity, 97, 193203. doi: 10.1016/j.bbi.2021.07.014CrossRefGoogle ScholarPubMed
Souza-Queiroz, J., Boisgontier, J., Etain, B., Poupon, C., Duclap, D., d'Albis, M. A., … Houenou, J. (2016). Childhood trauma and the limbic network: A multimodal MRI study in patients with bipolar disorder and controls. Journal of Affective Disorders, 200, 159164. doi: 10.1016/j.jad.2016.04.038CrossRefGoogle ScholarPubMed
Tsai, S. Y., Gildengers, A. G., Hsu, J. L., Chung, K. H., Chen, P. H., & Huang, Y. J. (2019). Inflammation associated with volume reduction in the gray matter and hippocampus of older patients with bipolar disorder. Journal of Affective Disorders, 244, 6066. doi: 10.1016/j.jad.2018.10.093CrossRefGoogle ScholarPubMed
Valkanova, V., Ebmeier, K. P., & Allan, C. L. (2013). CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. Journal of Affective Disorders, 150(3), 736744. doi: 10.1016/j.jad.2013.06.004CrossRefGoogle ScholarPubMed
Wang, H., He, Y., Sun, Z., Ren, S., Liu, M., Wang, G., & Yang, J. (2022). Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation, 19(1), 132. doi: 10.1186/s12974-022-02492-0CrossRefGoogle ScholarPubMed
Williams, J. A., Burgess, S., Suckling, J., Lalousis, P. A., Batool, F., Griffiths, S. L., … Upthegrove, R. (2022). Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: A Mendelian randomization study. JAMA Psychiatry, 79(5), 498507. doi: 10.1001/jamapsychiatry.2022.0407CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Zahorec, R. (2001). Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratislavske Lekarske Listy, 102(1), 514.Google ScholarPubMed
Supplementary material: File

Cao et al. supplementary material 1

Cao et al. supplementary material
Download Cao et al. supplementary material 1(File)
File 1.4 MB
Supplementary material: File

Cao et al. supplementary material 2

Cao et al. supplementary material
Download Cao et al. supplementary material 2(File)
File 831.2 KB
Supplementary material: File

Cao et al. supplementary material 3

Cao et al. supplementary material
Download Cao et al. supplementary material 3(File)
File 1.6 MB
Supplementary material: File

Cao et al. supplementary material 4

Cao et al. supplementary material
Download Cao et al. supplementary material 4(File)
File 52.6 KB
Supplementary material: File

Cao et al. supplementary material 5

Cao et al. supplementary material
Download Cao et al. supplementary material 5(File)
File 23.3 KB
Supplementary material: File

Cao et al. supplementary material 6

Cao et al. supplementary material
Download Cao et al. supplementary material 6(File)
File 19.1 KB
Supplementary material: File

Cao et al. supplementary material 7

Cao et al. supplementary material
Download Cao et al. supplementary material 7(File)
File 23 KB
Supplementary material: File

Cao et al. supplementary material 8

Cao et al. supplementary material
Download Cao et al. supplementary material 8(File)
File 19.4 KB