Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T00:49:55.802Z Has data issue: false hasContentIssue false

Early auditory processing abnormalities alter individual learning trajectories and sensitivity to computerized cognitive training in schizophrenia

Published online by Cambridge University Press:  08 April 2024

Juan L. Molina*
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
Yash B. Joshi
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
John A. Nungaray
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA
Joyce Sprock
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
Mouna Attarha
Affiliation:
Department of R&D, Posit Science Corporation, San Francisco, CA, USA
Bruno Biagianti
Affiliation:
Department of Psychology, University of Milano-Bicocca, Milan, Italy
Michael L. Thomas
Affiliation:
Department of Psychology, Colorado State University, Fort Collins, CO, USA
Neal R. Swerdlow
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA
Gregory A. Light
Affiliation:
Department of Psychiatry, University of California, San Diego, CA, USA VA Desert Pacific Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
*
Corresponding author: Juan L. Molina; Email: jlm028@health.ucsd.edu

Abstract

Background

Auditory system plasticity is a promising target for neuromodulation, cognitive rehabilitation and therapeutic development in schizophrenia (SZ). Auditory-based targeted cognitive training (TCT) is a ‘bottom up’ intervention designed to enhance the speed and accuracy of auditory information processing, which has been shown to improve neurocognition in certain SZ patients. However, the dynamics of TCT learning as a function of training exercises and their impact on neurocognitive functioning and therapeutic outcomes are unknown.

Methods

Forty subjects (SZ, n = 21; healthy subjects (HS), n = 19) underwent comprehensive clinical, cognitive, and auditory assessments, including measurements of auditory processing speed (APS) at baseline and after 1-h of TCT. SZ patients additionally completed 30-hours of TCT and repeated assessments ~10–12 weeks later.

Results

SZ patients were deficient in APS at baseline (d = 0.96, p < 0.005) relative to HS. After 1-h of TCT, analyses revealed significant main effects of diagnosis (d = 1.75, p = 0.002) and time (d = 1.04, p < 0.001), and a diagnosis × time interaction (d = 0.85, p = 0.02) on APS. APS learning effects were robust after 1-h in SZ patients (d = 1.47, p < 0.001) and persisted throughout the 30-h of training. Baseline APS was associated with verbal learning gains after 30-h of TCT (r = 0.51, p = 0.02) in SZ.

Conclusions

TCT learning metrics may have prognostic utility and aid in the prospective identification of individuals likely to benefit from TCT. Future experimental medicine studies may advance predictive algorithms that enhance TCT-related clinical, cognitive and functional outcomes.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401406. doi:10.1038/387401a0CrossRefGoogle ScholarPubMed
Ahissar, M., Nahum, M., Nelken, I., & Hochstein, S. (2009). Reverse hierarchies and sensory learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1515), 285299. doi:10.1098/rstb.2008.0253CrossRefGoogle ScholarPubMed
Alain, C., Snyder, J. S., He, Y., & Reinke, K. S. (2007). Changes in auditory cortex parallel rapid perceptual learning. Cerebral Cortex (New York, N.Y.: 1991), 17(5), 10741084. doi:10.1093/cercor/bhl018CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1983). The scale for the assessment of negative symptoms (SANS). Iowa City: The University of Iowa.Google Scholar
Andreasen, N. C. (1984). The scale for the assessment of positive symptoms. Iowa City: University of Iowa.Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148. doi:10.18637/jss.v067.i01CrossRefGoogle Scholar
Biagianti, B., Bigoni, D., Maggioni, E., & Brambilla, P. (2022). Can neuroimaging-based biomarkers predict response to cognitive remediation in patients with psychosis? A state-of-the-art review. Journal of Affective Disorders, 305, 196205. doi:10.1016/j.jad.2022.03.006CrossRefGoogle ScholarPubMed
Biagianti, B., Fisher, M., Neilands, T. B., Loewy, R., & Vinogradov, S. (2016). Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia. Neuropsychology, 30(8), 9981008. doi:10.1037/neu0000311CrossRefGoogle ScholarPubMed
Brown, M., & Kuperberg, G. R. (2015). A hierarchical generative framework of language processing: Linking language perception, interpretation, and production abnormalities in schizophrenia. Frontiers in Human Neuroscience, 9, 643. doi:10.3389/fnhum.2015.00643CrossRefGoogle ScholarPubMed
Dale, C. L., Brown, E. G., Fisher, M., Herman, A. B., Dowling, A. F., Hinkley, L. B., … Vinogradov, S. (2016). Auditory cortical plasticity drives training-induced cognitive changes in schizophrenia. Schizophrenia Bulletin, 42(1), 220228. doi:10.1093/schbul/sbv087Google ScholarPubMed
Dondé, C., Luck, D., Grot, S., Leitman, D. I., Brunelin, J., & Haesebaert, F. (2017). Tone-matching ability in patients with schizophrenia: A systematic review and meta-analysis. Schizophrenia Research, 181, 9499. doi:10.1016/j.schres.2016.10.009CrossRefGoogle ScholarPubMed
Dondé, C., Martínez, A., Kantrowitz, J. T., Silipo, G., Dias, E. C., Patel, G. H., … Javitt, D. C. (2019). Bimodal distribution of tone-matching deficits indicates discrete pathophysiological entities within the syndrome of schizophrenia. Translational Psychiatry, 9(1), 221. doi:10.1038/s41398-019-0557-8CrossRefGoogle ScholarPubMed
Dosher, B. A., & Lu, Z.-L. (2007). The functional form of performance improvements in perceptual learning: Learning rates and transfer. Psychological Science, 18(6), 531539. doi:10.1111/j.1467-9280.2007.01934.xCrossRefGoogle ScholarPubMed
First, M., Spitzer, R., Gibbon, M., & Williams, J. (2002). Structured clinical interview for DSM-IV-TR Axis I Disorders, Research Version, Non-patient Edition. In (SCID-I/P).Google Scholar
Fisher, M., Holland, C., Merzenich, M. M., & Vinogradov, S. (2009). Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. The American Journal of Psychiatry, 166(7), 805811. doi:10.1176/appi.ajp.2009.08050757CrossRefGoogle ScholarPubMed
Fisher, M., Loewy, R., Carter, C., Lee, A., Ragland, J. D., Niendam, T., … Vinogradov, S. (2015). Neuroplasticity-based auditory training via laptop computer improves cognition in young individuals with recent onset schizophrenia. Schizophrenia Bulletin, 41(1), 250258. doi:10.1093/schbul/sbt232CrossRefGoogle ScholarPubMed
Gomar, J. J., Pomarol-Clotet, E., Sarró, S., Salvador, R., Myers, C. E., & McKenna, P. J. (2011). Procedural learning in schizophrenia: Reconciling the discrepant findings. Biological Psychiatry, 69(1), 4954. doi:10.1016/j.biopsych.2010.07.013CrossRefGoogle ScholarPubMed
Hawkey, D. J. C., Amitay, S., & Moore, D. R. (2004). Early and rapid perceptual learning. Nature Neuroscience, 7(10), 10551056. doi:10.1038/nn1315CrossRefGoogle ScholarPubMed
Hochberger, W. C., Joshi, Y. B., Thomas, M. L., Zhang, W., Bismark, A. W., Treichler, E. B. H., … Light, G. A. (2019). Neurophysiologic measures of target engagement predict response to auditory-based cognitive training in treatment refractory schizophrenia. Neuropsychopharmacology, 44(3), 606612. doi:10.1038/s41386-018-0256-9CrossRefGoogle ScholarPubMed
Hong, J.-Y., Gallanter, E., Müller-Oehring, E. M., & Schulte, T. (2019). Phases of procedural learning and memory: Characterisation with perceptual-motor sequence tasks. Journal of Cognitive Psychology (Hove, England), 31(5–6), 543558. doi:10.1080/20445911.2019.1642897CrossRefGoogle ScholarPubMed
Horan, W. P., Green, M. F., Knowlton, B. J., Wynn, J. K., Mintz, J., & Nuechterlein, K. H. (2008). Impaired implicit learning in schizophrenia. Neuropsychology, 22(5), 606617. doi:10.1037/a0012602CrossRefGoogle ScholarPubMed
Iliadou, V. V., Apalla, K., Kaprinis, S., Nimatoudis, I., Kaprinis, G., & Iacovides, A. (2013). Is central auditory processing disorder present in psychosis? American Journal of Audiology, 22(2), 201208. doi:10.1044/1059-0889(2013/12-0073)CrossRefGoogle ScholarPubMed
Javitt, D. C., & Freedman, R. (2015). Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. The American Journal of Psychiatry, 172(1), 1731. doi:10.1176/appi.ajp.2014.13121691CrossRefGoogle ScholarPubMed
Joshi, Y. B., Gonzalez, C. E., Molina, J. L., MacDonald, L. R., Min Din, J., Minhas, J., … Light, G. A. (2023a). Mismatch negativity predicts initial auditory-based targeted cognitive training performance in a heterogeneous population across psychiatric disorders. Psychiatry Research, 327, 115215. doi:10.1016/j.psychres.2023.115215CrossRefGoogle Scholar
Joshi, Y. B., Molina, J. L., Braff, D. L., Green, M. F., Gur, R. C., Gur, R. E., … Light, G. A. (2023b). Sensitivity of schizophrenia endophenotype biomarkers to anticholinergic medication burden. The American Journal of Psychiatry, 180(7), 519523. doi:10.1176/appi.ajp.20220649CrossRefGoogle ScholarPubMed
Kambeitz-Ilankovic, L., Wenzel, J., Haas, S. S., Ruef, A., Antonucci, L. A., Sanfelici, R., … Biagianti, B. (2020). Modeling social sensory processing during social computerized cognitive training for psychosis spectrum: The resting-state approach. Frontiers in Psychiatry, 11, 554475. doi:10.3389/fpsyt.2020.554475CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Vinogradov, S., Medalia, A., Buckley, P. F., Caroff, S. N., D'Souza, D. C., … Stroup, T. S. (2012). Feasibility and pilot efficacy results from the multisite Cognitive Remediation in the Schizophrenia Trials Network (CRSTN) randomized controlled trial. The Journal of Clinical Psychiatry, 73(7), 10161022. doi:10.4088/JCP.11m07100CrossRefGoogle ScholarPubMed
Keepers, G. A., Fochtmann, L. J., Anzia, J. M., Benjamin, S., Lyness, J. M., & Mojtabai, R., … (Systematic Review). (2020). The American psychiatric association practice guideline for the treatment of patients with schizophrenia. The American Journal of Psychiatry, 177(9), 868872. doi:10.1176/appi.ajp.2020.177901CrossRefGoogle ScholarPubMed
Koshiyama, D., Miyakoshi, M., Thomas, M. L., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., … Light, G. A. (2020). Auditory-based cognitive training drives short- and long-term plasticity in cortical networks in schizophrenia. Schizophrenia Bulletin Open, 1(1), sgaa065. doi:10.1093/schizbullopen/sgaa065CrossRefGoogle Scholar
Lengyel, G., & Fiser, J. (2019). The relationship between initial threshold, learning, and generalization in perceptual learning. Journal of Vision, 19(4), 28. doi:10.1167/19.4.28CrossRefGoogle ScholarPubMed
Light, G. A., Joshi, Y. B., Molina, J. L., Bhakta, S. G., Nungaray, J. A., Cardoso, L., … Swerdlow, N. R. (2020). Neurophysiological biomarkers for schizophrenia therapeutics. Biomarkers in Neuropsychiatry, 2, 100012. doi:10.1016/j.bionps.2020.100012CrossRefGoogle Scholar
Light, G. A., & Swerdlow, N. R. (2015). Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Annals of the New York Academy of Sciences, 1344, 105119. doi:10.1111/nyas.12730CrossRefGoogle ScholarPubMed
Martin, A. M. S., Bartolomeo, L., Howell, J., Hetrick, W. P., Bolbecker, A. R., Breier, A., … O'Donnell, B. F. (2018). Auditory feature perception and auditory hallucinatory experiences in schizophrenia spectrum disorder. European Archives of Psychiatry and Clinical Neuroscience, 268(7), 653661. doi:10.1007/s00406-017-0839-1CrossRefGoogle Scholar
McKay, C. M., Headlam, D. M., & Copolov, D. L. (2000). Central auditory processing in patients with auditory hallucinations. The American Journal of Psychiatry, 157(5), 759766. doi:10.1176/appi.ajp.157.5.759CrossRefGoogle ScholarPubMed
Medalia, A., Saperstein, A., Javitt, D. C., Qian, M., Meyler, S., & Styke, S. (2023). Feasibility and clinical utility of using the tone matching test for assessment of early auditory processing in schizophrenia. Psychiatry Research, 323, 115152. doi:10.1016/j.psychres.2023.115152CrossRefGoogle ScholarPubMed
Medalia, A., Saperstein, A. M., Qian, M., & Javitt, D. C. (2019). Impact of baseline early auditory processing on response to cognitive remediation for schizophrenia. Schizophrenia Research, 208, 397405. doi:10.1016/j.schres.2019.01.012CrossRefGoogle ScholarPubMed
Molina, J. L., Joshi, Y. B., Nungaray, J. A., Thomas, M. L., Sprock, J., Clayson, P. E., … Light, G. A. (2021). Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training. Schizophrenia Research, 236, 135141. doi:10.1016/j.schres.2021.07.033CrossRefGoogle ScholarPubMed
Molina, J. L., Thomas, M. L., Joshi, Y. B., Hochberger, W. C., Koshiyama, D., Nungaray, J. A., … Light, G. A. (2020a). Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Translational Psychiatry, 10(1), 405. doi:10.1038/s41398-020-01089-6CrossRefGoogle ScholarPubMed
Molina, J. L., Voytek, B., Thomas, M. L., Joshi, Y. B., Bhakta, S. G., Talledo, J. A., … Light, G. A. (2020b). Memantine effects on electroencephalographic measures of putative excitatory/inhibitory balance in schizophrenia. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 5(6), 562568. doi:10.1016/j.bpsc.2020.02.004CrossRefGoogle ScholarPubMed
Näätänen, R., & Kähkönen, S. (2009). Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: A review. International Journal of Neuropsychopharmacology, 12(1), 125135. doi:10.1017/S1461145708009322CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Green, M. F., Kern, R. S., Baade, L. E., Barch, D. M., Cohen, J. D., … Marder, S. R. (2008). The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. The American Journal of Psychiatry, 165(2), 203213. doi:10.1176/appi.ajp.2007.07010042CrossRefGoogle ScholarPubMed
Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen, K., & Palva, S. (2013). Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 35853590. doi:10.1073/pnas.1216855110CrossRefGoogle ScholarPubMed
Perez, V. B., Miyakoshi, M., Makeig, S. D., & Light, G. A. (2019). Mismatch negativity reveals plasticity in cortical dynamics after 1-hour of auditory training exercises. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 145, 4047. doi:10.1016/j.ijpsycho.2019.06.003CrossRefGoogle ScholarPubMed
Perez, V. B., Tarasenko, M., Miyakoshi, M., Pianka, S. T., Makeig, S. D., Braff, D. L., … Light, G. A. (2017). Mismatch negativity is a sensitive and predictive biomarker of perceptual learning during auditory cognitive training in schizophrenia. Neuropsychopharmacology, 42(11), 22062213. doi:10.1038/npp.2017.25CrossRefGoogle ScholarPubMed
Prikken, M., Konings, M. J., Lei, W. U., Begemann, M. J. H., & Sommer, I. E. C. (2019). The efficacy of computerized cognitive drill and practice training for patients with a schizophrenia-spectrum disorder: A meta-analysis. Schizophrenia Research, 204, 368374. doi:10.1016/j.schres.2018.07.034CrossRefGoogle ScholarPubMed
Ramsay, I. S., Schallmo, M.-P., Biagianti, B., Fisher, M., Vinogradov, S., & Sponheim, S. R. (2020). Deficits in auditory and visual sensory discrimination reflect a genetic liability for psychosis and predict disruptions in global cognitive functioning. Frontiers in Psychiatry, 11, 638. doi:10.3389/fpsyt.2020.00638CrossRefGoogle ScholarPubMed
Revheim, N., Corcoran, C. M., Dias, E., Hellmann, E., Martinez, A., Butler, P. D., … Javitt, D. C. (2014). Reading deficits in schizophrenia and individuals at high clinical risk: Relationship to sensory function, course of illness, and psychosocial outcome. The American Journal of Psychiatry, 171(9), 949959. doi:10.1176/appi.ajp.2014.13091196CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Bhakta, S. G., & Light, G. A. (2018). Room to move: Plasticity in early auditory information processing and auditory learning in schizophrenia revealed by acute pharmacological challenge. Schizophrenia Research, 199, 285291. doi:10.1016/j.schres.2018.03.037CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Bhakta, S. G., Talledo, J., Kotz, J., Roberts, B. Z., Clifford, R. E., … Light, G. A. (2020). Memantine effects on auditory discrimination and training in schizophrenia patients. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 45(13), 21802188. doi:10.1038/s41386-020-00865-8CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Tarasenko, M., Bhakta, S. G., Talledo, J., Alvarez, A. I., Hughes, E. L., … Light, G. A. (2017). Amphetamine enhances gains in auditory discrimination training in adult schizophrenia patients. Schizophrenia Bulletin, 43(4), 872880. doi:10.1093/schbul/sbw148Google ScholarPubMed
Tarasenko, M., Perez, V. B., Pianka, S. T., Vinogradov, S., Braff, D. L., Swerdlow, N. R., & Light, G. A. (2016). Measuring the capacity for auditory system plasticity: An examination of performance gains during initial exposure to auditory-targeted cognitive training in schizophrenia. Schizophrenia Research, 172(1–3), 123130. doi:10.1016/j.schres.2016.01.019CrossRefGoogle ScholarPubMed
Thomas, M. L., Bismark, A. W., Joshi, Y. B., Tarasenko, M., Treichler, E. B. H., Hochberger, W. C., … Light, G. A. (2018). Targeted cognitive training improves auditory and verbal outcomes among treatment refractory schizophrenia patients mandated to residential care. Schizophrenia Research, 202, 378384. doi:10.1016/j.schres.2018.07.025CrossRefGoogle ScholarPubMed
Thomas, M. L., Green, M. F., Hellemann, G., Sugar, C. A., Tarasenko, M., Calkins, M. E., … Light, G. A. (2017). Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry, 74(1), 3746. doi:10.1001/jamapsychiatry.2016.2980CrossRefGoogle ScholarPubMed
Tseng, A., DuBois, M., Biagianti, B., Brumley, C., & Jacob, S. (2023). Auditory domain sensitivity and neuroplasticity-based targeted cognitive training in autism spectrum disorder. Journal of Clinical Medicine, 12(4), 1635. doi:10.3390/jcm12041635CrossRefGoogle ScholarPubMed
Weickert, T. W., Terrazas, A., Bigelow, L. B., Malley, J. D., Hyde, T., Egan, M. F., … Goldberg, T. E. (2002). Habit and skill learning in schizophrenia: Evidence of normal striatal processing with abnormal cortical input. Learning & Memory, 9(6), 430442. doi:10.1101/lm.49102CrossRefGoogle ScholarPubMed
Weihing, J., Chermak, G. D., & Musiek, F. E. (2015). Auditory training for central auditory processing disorder. Seminars in Hearing, 36(4), 199215. doi:10.1055/s-0035-1564458Google ScholarPubMed
Wexler, B. E., Stevens, A. A., Bowers, A. A., Sernyak, M. J., & Goldman-Rakic, P. S. (1998). Word and tone working memory deficits in schizophrenia. Archives of General Psychiatry, 55(12), 10931096. doi:10.1001/archpsyc.55.12.1093CrossRefGoogle ScholarPubMed
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. The American Journal of Psychiatry, 168(5), 472485. doi:10.1176/appi.ajp.2010.10060855CrossRefGoogle ScholarPubMed
Supplementary material: File

Molina et al. supplementary material 1

Molina et al. supplementary material
Download Molina et al. supplementary material 1(File)
File 12.1 MB
Supplementary material: File

Molina et al. supplementary material 2

Molina et al. supplementary material
Download Molina et al. supplementary material 2(File)
File 15.5 KB
Supplementary material: File

Molina et al. supplementary material 3

Molina et al. supplementary material
Download Molina et al. supplementary material 3(File)
File 15.1 KB