Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T21:35:00.581Z Has data issue: false hasContentIssue false

Dissociation of basolateral and central amygdala effective connectivity predicts the stability of emotion-related impulsivity in adolescents and emerging adults with borderline personality symptoms: a resting-state fMRI study

Published online by Cambridge University Press:  28 February 2022

Nathan T. Hall*
Affiliation:
Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Michael N. Hallquist*
Affiliation:
Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
*
Author for correspondence: Michael N. Hallquist, E-mail: michael.hallquist@unc.edu
Author for correspondence: Michael N. Hallquist, E-mail: michael.hallquist@unc.edu

Abstract

Background

Borderline personality disorder (BPD) is associated with altered activity in the prefrontal cortex (PFC) and amygdala, yet no studies have examined fronto-limbic circuitry in borderline adolescents and emerging adults. Here, we examined the contribution of fronto-limbic effective connectivity (EC) to the longitudinal stability of emotion-related impulsivity, a key feature of BPD, in symptomatic adolescents and young adults.

Methods

We compared resting-state EC in 82 adolescents and emerging adults with and without clinically significant borderline symptoms (n BPD = 40, ages 13–30). Group-specific directed networks were estimated amongst fronto-limbic nodes including PFC, ventral striatum (VS), central amygdala (CeN), and basolateral amygdala (BLA). We examined the association of directed centrality metrics with initial levels and rates of change in emotion-related impulsivity symptoms over a one-year follow-up using latent growth curve models (LGCMs).

Results

In controls, ventromedial prefrontal cortex (vmPFC) and dorsal ACC had a directed influence on CeN and VS, respectively. In the BPD group, bilateral BLA had a directed influence on CeN, whereas in the healthy group CeN influenced BLA. LGCMs indicated that emotion-related impulsivity was stable across a one-year follow-up in the BPD group. Further, higher EC of R CeN to other regions in controls was associated with stronger within-person decreases in emotion-related impulsivity.

Conclusions

Functional inputs from BLA and vmPFC appear to play competing roles in influencing CeN activity. In borderline adolescents and young adults, BLA may predominate over CeN activity, while in controls the ability of CeN to influence BLA activity predicted more rapid reductions in emotion-related impulsivity.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alakörkkö, T., Saarimäki, H., Glerean, E., Saramäki, J., & Korhonen, O. (2017). Effects of spatial smoothing on functional brain networks. European Journal of Neuroscience, 46(9), 24712480. https://doi.org/10.1111/ejn.13717.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: American Psychiatric Pub.Google Scholar
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410422. https://doi.org/10.1038/nrn2648.CrossRefGoogle ScholarPubMed
Balleine, B. W., & Killcross, S. (2006). Parallel incentive processing: An integrated view of amygdala function. Trends in Neurosciences, 29(5), 272279. https://doi.org/10.1016/j.tins.2006.03.002.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353364. https://doi.org/10.1038/nn.4502.CrossRefGoogle ScholarPubMed
Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. Multivariate Behavioral Research, 52(6), 789804. https://doi.org/10.1080/00273171.2017.1373014.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2007). The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391431. https://doi.org/10.1007/s00213-006-0578-x.CrossRefGoogle ScholarPubMed
Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., … Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage, 83, 550558. https://doi.org/10.1016/j.neuroimage.2013.05.099.CrossRefGoogle ScholarPubMed
Bollen, K. A., & Curran, P. J. (2005). Latent curve models: A structural equation perspective (1 ed). Hoboken, NJ: Wiley-Interscience.CrossRefGoogle Scholar
Brereton, A., & McGlinchey, E. (2020). Self-harm, emotion regulation, and experiential avoidance: A systematic review. Archives of Suicide Research, 24(sup1), 124. https://doi.org/10.1080/13811118.2018.1563575.CrossRefGoogle ScholarPubMed
Brown, V. M., LaBar, K. S., Haswell, C. C., Gold, A. L., Mid-Atlantic MIRECC Workgroup, Beall, S. K., … Morey, R. A. (2014). Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology, 39(2), 361369. https://doi.org/10.1038/npp.2013.197.CrossRefGoogle ScholarPubMed
Burt, C. H., Sweeten, G., & Simons, R. L. (2014). Self-control through emerging adulthood: Instability, multidimensionality, and criminological significance. Criminology; An Interdisciplinary Journal, 52(3), 450487. https://doi.org/10.1111/1745-9125.12045.Google Scholar
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26(3), 321352. https://doi.org/10.1016/S0149-7634(02)00007-6.CrossRefGoogle ScholarPubMed
Cartoni, E., Balleine, B., & Baldassarre, G. (2016). Appetitive pavlovian-instrumental transfer: A review. Neuroscience & Biobehavioral Reviews, 71, 829848. https://doi.org/10.1016/j.neubiorev.2016.09.020.CrossRefGoogle ScholarPubMed
Cassidy, B., Bowman, D. B., Rae, C., & Solo, V. (2017). On the reliability of individual brain activity networks. IEEE Transactions on Medical Imaging, PP(99), 11. https://doi.org/10.1109/TMI.2017.2774364.Google Scholar
Choi, E. Y., Yeo, B. T. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108(8), 22422263. https://doi.org/10.1152/jn.00270.2012.CrossRefGoogle ScholarPubMed
Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B. E., Letzkus, J. J., Vlachos, I., … Lüthi, , A. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468(7321), 277282. https://doi.org/10.1038/nature09559.CrossRefGoogle ScholarPubMed
Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., … Satterthwaite, T. D, . (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage, 154, 174187. https://doi.org/10.1016/j.neuroimage.2017.03.020.CrossRefGoogle ScholarPubMed
Clifton, A., & Pilkonis, P. A. (2007). Evidence for a single latent class of diagnostic and statistical manual of mental disorders borderline personality pathology. Comprehensive Psychiatry, 48(1), 7078. https://doi.org/10.1016/j.comppsych.2006.07.002.CrossRefGoogle ScholarPubMed
Cohen, P. (2008). Child development and personality disorder. Psychiatric Clinics of North America, 31(3), 477493. https://doi.org/10.1016/j.psc.2008.03.005.CrossRefGoogle ScholarPubMed
Corbit, L. H., & Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. Journal of Neuroscience, 25(4), 962970. https://doi.org/10.1523/JNEUROSCI.4507-04.2005.CrossRefGoogle ScholarPubMed
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 3(29), 162173. https://doi.org/10.1006/cbmr.1996.0014.CrossRefGoogle Scholar
Crowell, S. E., Beauchaine, T. P., & Linehan, M. M. (2009). A biosocial developmental model of borderline personality: Elaborating and extending Linehan's theory. Psychological Bulletin, 135(3), 495510. https://doi.org/10.1037/a0015616.CrossRefGoogle ScholarPubMed
Cule, E., & De Iorio, M. (2012). A semi-automatic method to guide the choice of ridge parameter in ridge regression. ArXiv:1205.0686 [q-Bio, Stat]. http://arxiv.org/abs/1205.0686.Google Scholar
Cyders, M. A., & Smith, G. T. (2008). Emotion-based dispositions to rash action: Positive and negative urgency. Psychological Bulletin, 134(6), 807828. https://doi.org/10.1037/a0013341.CrossRefGoogle ScholarPubMed
Cyders, M. A., Smith, G. T., Spillane, N. S., Fischer, S., Annus, A. M., & Peterson, C. (2007). Integration of impulsivity and positive mood to predict risky behavior: Development and validation of a measure of positive urgency. Psychological Assessment, 19(1), 107118. https://doi.org/10.1037/1040-3590.19.1.107.CrossRefGoogle ScholarPubMed
de la Fuente-Fernández, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J., & Stoessl, A. J. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research, 136(2), 359363. https://doi.org/10.1016/S0166-4328(02)00130-4.CrossRefGoogle Scholar
de Reus, M. A., & van den Heuvel, M. P. (2013). Estimating false positives and negatives in brain networks. NeuroImage, 70, 402409. https://doi.org/10.1016/j.neuroimage.2012.12.066.CrossRefGoogle ScholarPubMed
Donegan, N. H., Sanislow, C. A., Blumberg, H. P., Fulbright, R. K., Lacadie, C., Skudlarski, P., … Wexler, B. E. (2003). Amygdala hyperreactivity in borderline personality disorder: Implications for emotional dysregulation. Biological Psychiatry, 54(11), 12841293. https://doi.org/10.1016/S0006-3223(03)00636-X.CrossRefGoogle ScholarPubMed
Enzi, B., Doering, S., Faber, C., Hinrichs, J., Bahmer, J., & Northoff, G. (2011). Reduced deactivation in reward circuitry and midline structures during emotion processing in borderline personality disorder. The World Journal of Biological Psychiatry, 14(1), 4556. https://doi.org/10.3109/15622975.2011.579162.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593. https://doi.org/10.1016/j.tics.2010.11.004.CrossRefGoogle ScholarPubMed
Fareri, D. S., Gabard-Durnam, L., Goff, B., Flannery, J., Gee, D. G., … Tottenham, N. (2015). Normative development of ventral striatal resting-state connectivity in humans. NeuroImage, 118, 422437. https://doi.org/10.1016/j.neuroimage.2015.06.022.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR axis I disorders. New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
Floresco, S. B. (2015). The nucleus accumbens: An interface between cognition, emotion, and action. Annual Review of Psychology, 66(1), 2552. https://doi.org/10.1146/annurev-psych-010213-115159.CrossRefGoogle ScholarPubMed
Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R., & Collins, D. L. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, Supplement 1(47), S102. https://doi.org/10.1016/S1053-8119(09)70884-5.CrossRefGoogle Scholar
Frank, G. K. W., Shott, M. E., Riederer, J., & Pryor, T. L. (2016). Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Translational Psychiatry, 6(11), e932e932. https://doi.org/10.1038/tp.2016.199.CrossRefGoogle ScholarPubMed
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310319. https://doi.org/10.1016/j.neuroimage.2012.06.026.CrossRefGoogle ScholarPubMed
Gee, D. G., Fetcho, R. N., Jing, D., Li, A., Glatt, C. E., & Drysdale, A. T., … The PING Consortium. (2016). Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings of the National Academy of Sciences, 113(16), 45004505. https://doi.org/10.1073/pnas.1600013113.CrossRefGoogle ScholarPubMed
Gregorios-Pippas, L., Tobler, P. N., & Schultz, W. (2009). Short-term temporal discounting of reward value in human ventral Striatum. Journal of Neurophysiology, 101(3), 15071523. https://doi.org/10.1152/jn.90730.2008.CrossRefGoogle ScholarPubMed
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration., accurate and robust brain image alignment using boundary-based registration. NeuroImage, NeuroImage, 48(1, 1), 6372. https://doi.org/10.1016/j.neuroimage.2009.06.060.CrossRefGoogle ScholarPubMed
Harden, K. P., & Tucker-Drob, E. M. (2011). Individual differences in the development of sensation seeking and impulsivity during adolescence: Further evidence for a dual systems model. Developmental Psychology, 47(3), 739746. http://dx.doi.org.ezaccess.libraries.psu.edu/10.1037/a0023279.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2015). An Index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 122. https://doi.org/10.1080/00273171.2014.962683.CrossRefGoogle ScholarPubMed
Henry, T. R., Feczko, E., Cordova, M., Earl, E., Williams, S., Nigg, J. T., … Gates, K. M. (2019). Comparing directed functional connectivity between groups with confirmatory subgrouping GIMME. NeuroImage, 188, 642653. https://doi.org/10.1016/j.neuroimage.2018.12.040.CrossRefGoogle ScholarPubMed
Herpertz, S. C., Dietrich, T. M., Wenning, B., Krings, T., Erberich, S. G., Willmes, K., … Sass, H. (2001). Evidence of abnormal amygdala functioning in borderline personality disorder: A functional MRI study. Biological Psychiatry, 50(4), 292298. https://doi.org/10.1016/S0006-3223(01)01075-7.CrossRefGoogle ScholarPubMed
Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284292. https://doi.org/10.1038/nature14188.CrossRefGoogle ScholarPubMed
Johnson, S. L., Elliott, M. V., & Carver, C. S. (2020). Impulsive responses to positive and negative emotions: Parallel neurocognitive correlates and their implications. Biological Psychiatry, 87(4), 338349. https://doi.org/10.1016/j.biopsych.2019.08.018.CrossRefGoogle ScholarPubMed
Jovanovic, T., & Ressler, K. J. (2010). How the neurocircuitry and genetics of fear inhibition May inform Our understanding of PTSD. American Journal of Psychiatry, 167(6), 648662. https://doi.org/10.1176/appi.ajp.2009.09071074.CrossRefGoogle ScholarPubMed
Kamphausen, S., Schröder, P., Maier, S., Bader, K., Feige, B., Kaller, C. P., … Tüscher, O. (2013). Medial prefrontal dysfunction and prolonged amygdala response during instructed fear processing in borderline personality disorder. The World Journal of Biological Psychiatry, 14(4), 307318. https://doi.org/10.3109/15622975.2012.665174.CrossRefGoogle ScholarPubMed
Kaye, A. P. (2021). Amygdala–Insula circuit computations in posttraumatic stress disorder. Biological Psychiatry, 89(9), e49e50. https://doi.org/10.1016/j.biopsych.2021.03.001.CrossRefGoogle ScholarPubMed
LeDoux, J. (2007). The amygdala. Current Biology: CB, 17(20), R868R874. https://doi.org/10.1016/j.cub.2007.08.005.CrossRefGoogle ScholarPubMed
Linehan, M. (1993). Cognitive-behavioral treatment of borderline personality disorder. New York, NY: Guilford Press.Google Scholar
Lynam, D. R., Smith, G. T., Whiteside, S. P., & Cyders, M. A. (2006). The UPPS-P: Assessing five personality pathways to impulsive behavior (vol. 10). West Lafayette, IN: Purdue University.Google Scholar
Martinez, E., Pasquereau, B., Drui, G., Saga, Y., Météreau, É., & Tremblay, L. (2020). Ventral striatum supports methylphenidate therapeutic effects on impulsive choices expressed in temporal discounting task. Scientific Reports, 10(1), 716. https://doi.org/10.1038/s41598-020-57595-6.CrossRefGoogle ScholarPubMed
Millman, K. J., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Computing in Science Engineering, 9(3), 5255. https://doi.org/10.1109/MCSE.2007.46.CrossRefGoogle Scholar
Minzenberg, M. J., Fan, J., New, A. S., Tang, C. Y., & Siever, L. J. (2007). Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: An event-related fMRI study. Psychiatry Research: Neuroimaging, 155(3), 231243. https://doi.org/10.1016/j.pscychresns.2007.03.006.CrossRefGoogle ScholarPubMed
Morey, L. (1991). An interpretive guide to the personality assessment inventory professional manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Moritz, S., & Cule, E. (2018). ridge: Ridge Regression with Automatic Selection of the Penalty Parameter (2.3) [Computer software]. https://CRAN.R-project.org/package=ridge.Google Scholar
Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal Cortex Is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276284. https://doi.org/10.1016/j.biopsych.2014.02.014.CrossRefGoogle ScholarPubMed
Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., … Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative associations. Nature, 520(7549), 675678. https://doi.org/10.1038/nature14366.CrossRefGoogle ScholarPubMed
Nawa, N. E., & Ando, H. (2019). Effective connectivity within the ventromedial prefrontal cortex-hippocampus-amygdala network during the elaboration of emotional autobiographical memories. NeuroImage, 189, 316328. https://doi.org/10.1016/j.neuroimage.2019.01.042.CrossRefGoogle ScholarPubMed
Olino, T. M., Stepp, S. D., Keenan, K., Loeber, R., & Hipwell, A. (2014). Trajectories of depression and anxiety symptoms in adolescent girls: A comparison of parallel trajectory approaches. Journal of Personality Assessment, 96(3), 316326. https://doi.org/10.1080/00223891.2013.866570.CrossRefGoogle ScholarPubMed
Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5(2), 9798. https://doi.org/10.1038/nn802.CrossRefGoogle ScholarPubMed
Pawluk, E. J., & Koerner, N. (2016). The relationship between negative urgency and generalized anxiety disorder symptoms: The role of intolerance of negative emotions and intolerance of uncertainty. Anxiety, Stress, & Coping, 29(6), 606615. https://doi.org/10.1080/10615806.2015.1134786.CrossRefGoogle ScholarPubMed
Pfohl, B., Blum, N. S., & Zimmermann, M. (1997). Structured interview for DSM-IV personality: SIDP-IV. Washington, DC: American Psychiatric Press.Google Scholar
Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267277. https://doi.org/10.1016/j.neuroimage.2015.02.064.CrossRefGoogle ScholarPubMed
Quinn, P. D., & Harden, K. P. (2013). Differential changes in impulsivity and sensation-seeking and the escalation of substance use from adolescence to early adulthood. Development and Psychopathology, 25(1), 223239. https://doi.org/10.1017/S0954579412000284.CrossRefGoogle ScholarPubMed
Quirk, G. J., & Gehlert, D. R. (2006). Inhibition of the amygdala: Key to pathological states? Annals of the New York Academy of Sciences, 985(1), 263272. https://doi.org/10.1111/j.1749-6632.2003.tb07087.x.CrossRefGoogle Scholar
Quirk, G. J., Likhtik, E., Pelletier, J. G., & Paré, D. (2003). Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. Journal of Neuroscience, 23(25), 88008807. https://doi.org/10.1523/JNEUROSCI.23-25-08800.2003.CrossRefGoogle ScholarPubMed
Roche, A. (2011). A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Transactions on Medical Imaging, 30(8), 15461554. https://doi.org/10.1109/TMI.2011.2131152.CrossRefGoogle ScholarPubMed
Rosenkranz, J. A., & Grace, A. A. (2001). Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. Journal of Neuroscience, 21(11), 40904103. https://doi.org/10.1523/JNEUROSCI.21-11-04090.2001.CrossRefGoogle Scholar
Rosenkranz, J. A., & Grace, A. A. (2002). Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons In vivo. Journal of Neuroscience, 22(1), 324337. https://doi.org/10.1523/JNEUROSCI.22-01-00324.2002.CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48, 136. https://doi.org/10.18637/jss.v048.i02.CrossRefGoogle Scholar
Salvador, R., Vega, D., Pascual, J. C., Marco, J., Canales-Rodríguez, E. J., Aguilar, S., Anguera, , … Pomarol-Clotet, E. (2016). Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biological Psychiatry, 79(2), 107116. https://doi.org/10.1016/j.biopsych.2014.08.026.CrossRefGoogle ScholarPubMed
Sarkheil, P., Ibrahim, C. N., Schneider, F., Mathiak, K., & Klasen, M. (2019). Aberrant functional connectivity profiles of brain regions associated with salience and reward processing in female patients with borderline personality disorder. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-019-00065-z.Google Scholar
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., … Yeo, B. T. T. (2018). Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 28(9), 30953114. https://doi.org/10.1093/cercor/bhx179.CrossRefGoogle ScholarPubMed
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., … Bauer, A. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28(52), 1431114319. https://doi.org/10.1523/JNEUROSCI.2058-08.2008.CrossRefGoogle ScholarPubMed
Schulze, L., Schmahl, C., & Niedtfeld, I. (2016). Neural correlates of disturbed emotion processing in borderline personality disorder: A multimodal meta-analysis. Biological Psychiatry, 79(2), 97106. https://doi.org/10.1016/j.biopsych.2015.03.027.CrossRefGoogle ScholarPubMed
Settles, R. E., Fischer, S., Cyders, M. A., Combs, J. L., Gunn, R. L., & Smith, G. T. (2012). Negative urgency: A personality predictor of externalizing behavior characterized by neuroticism, Low conscientiousness, and disagreeableness. Journal of Abnormal Psychology, 121(1), 160172. https://doi.org/10.1037/a0024948.CrossRefGoogle ScholarPubMed
Shackman, A. J., & Fox, A. S. (2016). Contributions of the central extended amygdala to fear and AnxietyContributions of the central extended amygdala to fear and anxiety. Journal of Neuroscience, 36(31), 80508063. https://doi.org/10.1523/JNEUROSCI.0982-16.2016.CrossRefGoogle ScholarPubMed
Silbersweig, D., Clarkin, J. F., Goldstein, M., Kernberg, O. F., Tuescher, O., Levy, K. N., … Stern, E. (2007). Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder. The American Journal of Psychiatry, 164(12), 18321841. https://doi.org/10.1176/appi.ajp.2007.06010126.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, Supplement 1(23), S208S219. https://doi.org/10.1016/j.neuroimage.2004.07.051.CrossRefGoogle Scholar
Soloff, P. H., White, R., Omari, A., Ramaseshan, K., & Diwadkar, V. A. (2015). Affective context interferes with brain responses during cognitive processing in borderline personality disorder: FMRI evidence. Psychiatry Research: Neuroimaging, 233(1), 2335. https://doi.org/10.1016/j.pscychresns.2015.04.006.CrossRefGoogle ScholarPubMed
Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36(3), 736745. https://doi.org/10.1016/j.neuroimage.2007.03.022.CrossRefGoogle ScholarPubMed
Steinberg, L., Icenogle, G., Shulman, E. P., Breiner, K., Chein, J., Bacchini, D. C., … Takash, H. M. S. (2018). Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental Science, 21(2), e12532. https://doi.org/10.1111/desc.12532.CrossRefGoogle ScholarPubMed
Tottenham, N., & Galván, A. (2016). Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience & Biobehavioral Reviews, 70, 217227. https://doi.org/10.1016/j.neubiorev.2016.07.030.CrossRefGoogle ScholarPubMed
Tye, K. M., Prakash, R., Kim, S.-Y., Fenno, L. E., Grosenick, L., Zarabi, H., … Deisseroth, K. (2011). Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 471(7338), 358362. https://doi.org/10.1038/nature09820.CrossRefGoogle ScholarPubMed
Watanabe, N., Bhanji, J. P., Tanabe, H. C., & Delgado, M. R. (2019). Ventromedial prefrontal cortex contributes to performance success by controlling reward-driven arousal representation in amygdala. NeuroImage, 202, 116136. https://doi.org/10.1016/j.neuroimage.2019.116136.CrossRefGoogle ScholarPubMed
Weiss, N. H., Tull, M. T., Sullivan, T. P., Dixon-Gordon, K. L., & Gratz, K. L. (2015). Posttraumatic stress disorder symptoms and risky behaviors among trauma-exposed inpatients with substance dependence: The influence of negative and positive urgency. Drug and Alcohol Dependence, 155, 147153. https://doi.org/10.1016/j.drugalcdep.2015.07.679.CrossRefGoogle ScholarPubMed
Wenzel, K. R., Weinstock, J., Vander Wal, J. S., & Weaver, T. L. (2014). Examining the role of negative urgency in a predictive model of bulimic symptoms. Eating Behaviors, 15(3), 343349. https://doi.org/10.1016/j.eatbeh.2014.04.014.CrossRefGoogle Scholar
Whiteside, S. P., & Lynam, D. R. (2001). The five-factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669689. https://doi.org/10.1016/S0191-8869(00)00064-7.CrossRefGoogle Scholar
Zahm, D. S., Jensen, S. L., Williams, E. S., & Martin, J. R. (1999). Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell. European Journal of Neuroscience, 11(4), 11191126. https://doi.org/10.1046/j.1460-9568.1999.00524.x.CrossRefGoogle ScholarPubMed
Zanarini, M. C., & Frankenburg, F. R. (1997). Pathways to the development of borderline personality disorder. Journal of Personality Disorders, 11(1), 93104. https://doi.org/10.1521/pedi.1997.11.1.93.CrossRefGoogle Scholar
Zanarini, M. C., Gunderson, J. G., Marino, M. F., Schwartz, E. O., & Frankenburg, F. R. (1989). Childhood experiences of borderline patients. Comprehensive Psychiatry, 30(1), 1825. https://doi.org/10.1016/0010-440X(89)90114-4.CrossRefGoogle ScholarPubMed
Zanarini, M. C., Temes, C. M., Frankenburg, F. R., Reich, D. B., & Fitzmaurice, G. M. (2018). Description and prediction of time-to-attainment of excellent recovery for borderline patients followed prospectively for 20 years. Psychiatry Research, 262, 4045. https://doi.org/10.1016/j.psychres.2018.01.034.CrossRefGoogle ScholarPubMed
Zelkowitz, P., Paris, J., Guzder, J., Feldman, R., Roy, C., & Rosval, L. (2007). A five-year follow-up of patients with borderline pathology of childhood. Journal of Personality Disorders, 21(6), 664674. https://doi.org/10.1521/pedi.2007.21.6.664.CrossRefGoogle ScholarPubMed
Zhang, W.-H., Zhang, J.-Y., Holmes, A., & Pan, B.-X. (2021). Amygdala circuit substrates for stress adaptation and adversity. Biological Psychiatry, 89(9), 847856. https://doi.org/10.1016/j.biopsych.2020.12.026.CrossRefGoogle ScholarPubMed
Zorrilla, E. P., & Koob, G. F. (2019). Impulsivity derived from the dark side: Neurocircuits that contribute to negative urgency. Frontiers in Behavioral Neuroscience, 13, 136. https://doi.org/10.3389/fnbeh.2019.00136.CrossRefGoogle ScholarPubMed
Supplementary material: File

Hall and Hallquist supplementary material

Hall and Hallquist supplementary material

Download Hall and Hallquist supplementary material(File)
File 3 MB