Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T01:18:32.473Z Has data issue: false hasContentIssue false

Cyclic AMP in cerebrospinal fluid of manic and depressive patients

Published online by Cambridge University Press:  09 July 2009

Robert M. Post*
Affiliation:
From the Sections on Psychiatry and Psychobiology, National Institute of Mental Health, Bethesda, Maryland USA, and the Department of Neurology and Neurophysiology, University of Freiburg, Germany
Hinrich Cramer
Affiliation:
From the Sections on Psychiatry and Psychobiology, National Institute of Mental Health, Bethesda, Maryland USA, and the Department of Neurology and Neurophysiology, University of Freiburg, Germany
Frederick K. Goodwin
Affiliation:
From the Sections on Psychiatry and Psychobiology, National Institute of Mental Health, Bethesda, Maryland USA, and the Department of Neurology and Neurophysiology, University of Freiburg, Germany
*
1Address for correspondence: Dr Robert M. Post, section on Psychobiology, Adult Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20014, USA.

Synopsis

Cyclic 3′5′-adenosine monophosphate (c-AMP) was measured in cerebrospinal fluid (CSF) of manic and depressive patients with and without probenecid administration both before and during treatment with various psychotropic drugs. Oral probenecid (100 mg/kg) produced substantial c-AMP accumulations in CSF suggesting a probenecid-sensitive transport mechanism for c-AMP. Baseline and probenecid-induced accumulations of c-AMP were not significantly different in manic and depressed patients, while baseline levels in depressed patients were higher than those in neurological controls. Imipramine, amitriptyline, lithium, tryptophan, and electroconvulsant therapies did not significantly alter levels or accumulations of c-AMP in CSF of depressed patients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulla, Y. H. & Hamadah, K. (1970). 3′, 5′-Cylic adenosine monophosphate in depression and mania. Lancet i, 378381.CrossRefGoogle Scholar
Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science 184, 13411348.CrossRefGoogle ScholarPubMed
Brooks, B. R., Sode, J. & Engel, W. K. (1976). Cyclic nucleotide metabolism in motor neuron disease. In Research Trends in Amyotrophic Lateral Sclerosis. UCLA Forum in Medical Sciences, vol. 19 (ed. Andrews, J. M. and Johnson, R. T.), pp. 101118. Academic Press: New York.Google Scholar
Brown, B. L., Salway, J. G., Albano, J. D. M., Hullin, R. P. & Ekins, R. P. (1972). Urinary excretion of cyclic AMP and manic-depressive psychosis. British Journal of Psychiatry 120, 405408.CrossRefGoogle ScholarPubMed
Bunney, W. E. Jr & Hamburg, D. A. (1963). Methods for reliable longitudinal observation of behaviour. Archives of General Psychiatry 9, 280294.CrossRefGoogle Scholar
Carenzi, A., Gillin, J. C., Guidotti, A., Schwartz, M. A., Trabucchi, M. & Wyatt, R. J. (1975). Dopamine-sensitive adenyl cyclase in human caudate nucleus. Archives of General Psychiatry 32, 10561059.CrossRefGoogle ScholarPubMed
Carlsson, G. A. & Goodwin, F. K. (1973). The stages of mania: a longitudinal analysis of the manic episode. Archives of General Psychiatry 28, 221228.CrossRefGoogle Scholar
Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L. & Greengard, P. (1974). Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of anti-psychotic drugs. Proceedings of the National Academy of Sciences of the USA 71, 11131117.CrossRefGoogle Scholar
Collier, H. O. J., Francis, D. L., McDonald-Gibson, W. J., Roy, A. C. & Saeed, S. A. (1975). Prostaglandins, cyclic AMP and the mechanism of opiate dependence. Life Sciences 17, 8590.CrossRefGoogle ScholarPubMed
Cramer, H., Goodwin, F. K., Post, R. M. & Bunney, W. E. Jr (1972 a). Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness. Lancet i, 13461347.CrossRefGoogle Scholar
Cramer, H., Ng, L. K. Y. & Chase, T. N. (1972 b). Effect of probenecid on levels of cyclic AMP in human cerebrospinal fluid. Journal of Neurochemistry 19, 16011602.CrossRefGoogle ScholarPubMed
Daly, J. W. (1976). The nature of receptors regulating the formation of c-AMP in brain tissue. Life Sciences 18, 13491358.CrossRefGoogle Scholar
Davoren, P. R. & Sutherland, E. W. (1963). The effect of L-epinephrine and other agents on the synthesis and release of adenosine 3′, 5′-phosphate by whole pigeon erythrocytes. Journal of Biological Chemistry 238, 30093015.CrossRefGoogle Scholar
Ebstein, R., Belmaker, R., Grunhaus, L. & Rimon, R. (1976). Lithium inhibition of adrenaline-stimulated adenylate cyclase in humans. Nature 259, 411413.CrossRefGoogle ScholarPubMed
Eccleston, D., Loose, R., Pullar, I. A. & Sugden, R. F. (1970). Exercise and urinary excretion of cyclic AMP. Lancet ii, 612613.CrossRefGoogle Scholar
Feighner, J. P., Robins, E., Guze, S. B., Woodruff, R. A. Jr, Winokur, G. & Munoz, R. (1972). Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry 26, 5763.CrossRefGoogle ScholarPubMed
Forn, J. (1975). Lithium and cyclic AMP. In Lithium Research and Therapy (ed. Johnson, F. N.), pp. 485497. Academic Press: New York.Google Scholar
Forn, J. & Valdecasas, F. G. (1971). Effect of lithium on brain adenyl cyclase activity. Biochemical Pharmacology 20, 27732779.CrossRefGoogle ScholarPubMed
Geisler, A., Bech, P., Johannesen, M. & Rafaelson, O. J. (1977). Cyclic AMP levels in cerebrospinal fluid of manic-melancholic patients. Neuropsychobiology 2, 211220.CrossRefGoogle Scholar
Gilman, A. G. (1970). A protein binding assay for adenosine 3′, 5′-cyclic monophosphate. Proceedings of the National Academy of Sciences of the USA 67, 305312.CrossRefGoogle ScholarPubMed
Goodwin, F. K., Post, R. M., Dunner, D. L. & Gordon, E. K. (1973). Cerebrospinal fluid amine metabolites in affective illness: the probenecid technique. American Journal of Psychiatry 130, 7379.CrossRefGoogle ScholarPubMed
Greengard, P. (1976). Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260, 101108.CrossRefGoogle ScholarPubMed
Hamadah, K., Holmes, H., Barker, G. B., Hartmen, G. C. & Parke, D. V. W. (1972). Effect of electric convulsion therapy on urinary excretion of 3′, 5′-cyclic adenosine monophosphate. British Medical Journal iii, 439441.CrossRefGoogle Scholar
Heikkinen, E. R., Myllyla, V. V., Vapaatalo, H. & Hokkanen, E. (1974). Urinary excretion and cerebrospinal fluid concentration of cyclic adenosine-3′, 5′-monophosphate in various neurological diseases. European Neurology 11, 270280.CrossRefGoogle ScholarPubMed
Hullin, R. P., Salway, J. G., Allsopp, M. N. E., Barnes, G. D., Albano, J. D. M. & Brown, B. L. (1974). Urinary cyclic AMP in the switch process from depression to mania. British Journal of Psychiatry 125, 457458.CrossRefGoogle ScholarPubMed
Iversen, L. L. (1975). Dopamine receptors in the brain. A dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action. Science 188, 10841089.CrossRefGoogle Scholar
Jenner, F. A., Sampson, G. A., Thompson, E. A., Somer-ville, A. R., Beard, N. A. & Smith, A. A. (1972). Manic-depressive psychosis and urinary excretion of cyclic AMP. British Journal of Psychiatry 121, 236237.CrossRefGoogle ScholarPubMed
Kebabian, J. W., Steiner, A. L. & Greengard, P. (1975). Muscarinic cholinergic regulation of cyclic guanosine 3′, 5′-monophosphate in autonomic ganglia: possible role in synaptic transmission. Journal of Pharmacology and Experimental Therapeutics 193, 474488.Google ScholarPubMed
Kiessling, M., Lindl, T. & Cramer, H. (1975). Cyclic adenosine monophosphate in cerebrospinal fluid effects of theophylline, L-dopa and a dopamine receptor stimulant in rats. Archiv für Psychiatrie und Nervenkrankheiten 220, 325333.Google Scholar
McAfee, D. A., Schorderet, M. & Greengard, P. (1971). Adenosine 3′, 5′-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171, 11561158.CrossRefGoogle ScholarPubMed
Merali, Z. R., Singhal, L., Hrdina, P. D. & Ling, G. M. (1975). Changes in brain cyclic AMP metabolism and acetylcholine and dopamine during narcotic dependence and withdrawal. Life Sciences 16, 18891894.CrossRefGoogle ScholarPubMed
Naylor, G. J., Stansfield, D. A., Whyte, S. F. & Hutchinson, F. (1974). Urinary excretion of adenosine 3′, 5′-cyclic monophosphate in depressive illness. British Journal of Psychiatry 125, 275279.CrossRefGoogle Scholar
Palmer, G. C. & Scott, H. R. (1974). The cyclic AMP response to noradrenalin in young adult rat brain following post-natal injections of 6-hydroxydopamine. Experientia 30, 520521.CrossRefGoogle ScholarPubMed
Paul, M. I., Ditzion, B. R., Pauk, G. L. & Janowsky, D. S. (1970). Urinary adenosine 3′, 5′-monophosphate excretion in affective disorders. American Journal of Psychiatry 126, 14931497.CrossRefGoogle ScholarPubMed
Paul, M. I., Cramer, H. & Bunney, W. E. Jr (1971 a). Urinary adenosine 3′, 5′-monophosphate in the switch process from depression to mania. Science 171, 298303.CrossRefGoogle ScholarPubMed
Paul, M. I., Cramer, H. & Goodwin, F. K. (1971 b). Urinary cyclic AMP excretion in depression and mania. Archives of General Psychiatry 24, 327333.CrossRefGoogle ScholarPubMed
Perry, T. L., Hemmings, S., Drummond, G. I., Hansen, S. & Gjessing, L. R. (1973). Urinary cyclic AMP in periodic catatonia. American Journal of Psychiatry 130, 927929.CrossRefGoogle ScholarPubMed
Post, R. M., Kotin, J., Goodwin, F. K. & Gordon, E. K. (1973). Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. American Journal of Psychiatry 130, 6772.CrossRefGoogle ScholarPubMed
Robinson, G. A., Coppen, A. J., Whybrow, P. C. & Prange, A. J. (1970). Cyclic AMP in affective disorders. Lancet ii, 10281029.CrossRefGoogle Scholar
Sebens, J. B. & Korf, J. (1975). Cyclic AMP in cerebrospinal fluid: accumulation following probenecid and biogenic amines. Experimental Neurology 46, 333344.CrossRefGoogle Scholar
Sharma, S. K., Klee, W. A. & Nirenberg, M. (1975). Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proceedings of the National Academy of Sciences of the USA 72, 30923096.CrossRefGoogle ScholarPubMed
Shimizu, H., Tanaka, S., Suzuki, T. & Matsukado, Y. (1971). The response of human cerebrum adenyl cyclase to biogenic amines. Journal of Neurochemistry 18, 11571161.CrossRefGoogle ScholarPubMed
Skolnick, P. & Daly, J. W. (1974). Norepinephrine-sensitive adenylate cyclases in rat brain: relation to behaviour and tyrosine hydroxylase. Science 184, 175177.CrossRefGoogle ScholarPubMed
Smith, C. S., Tallman, J. F., Post, R. M., van Kammen, D. P., Jimerson, D. C., Brown, G. L., Brooks, B. R. & Bunney, W. E. Jr (1976). An examination of baseline and drug-induced levels of cyclic nucleotides in the cerebrospinal fluid of control and psychiatric patients. Life Sciences 19, 131136.CrossRefGoogle ScholarPubMed
Spitzer, R. L., Endicott, J. & Robins, E. (1975). Clinical criteria for psychiatric diagnosis and DSM III. American Journal of Psychiatry 32, 11871192.Google Scholar
Stone, T. W., Taylor, D. A. & Bloom, F. E. (1975). Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science 187, 845847.CrossRefGoogle ScholarPubMed
Sutherland, E. W. (1970). On the biological role of cyclic AMP. Journal of the American Medical Association 214, 12811288.CrossRefGoogle ScholarPubMed