Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-14T23:36:15.899Z Has data issue: false hasContentIssue false

Common neural deficits across reward functions in major depression: a meta-analysis of fMRI studies

Published online by Cambridge University Press:  23 May 2024

Xuanhao Zhao
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Shiyun Wu
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Xian Li
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Zhongwan Liu
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Weicong Lu
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Kangguang Lin*
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
Robin Shao*
Affiliation:
Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
*
Corresponding author: Kangguang Lin; Email: klin@gzhmu.edu.cn; Robin Shao; Email: rshao@gzhmu.edu.cn
Corresponding author: Kangguang Lin; Email: klin@gzhmu.edu.cn; Robin Shao; Email: rshao@gzhmu.edu.cn

Abstract

Major depressive disorder (MDD) is characterized by deficient reward functions in the brain. However, existing findings on functional alterations during reward anticipation, reward processing, and learning among MDD patients are inconsistent, and it was unclear whether a common reward system implicated in multiple reward functions is altered in MDD. Here we meta-analyzed 18 past studies that compared brain reward functions between adult MDD patients (N = 477, mean age = 26.50 years, female = 59.40%) and healthy controls (N = 506, mean age = 28.11 years, females = 55.58%), and particularly examined group differences across multiple reward functions. Jack-knife sensitivity and subgroup meta-analyses were conducted to test robustness of findings across patient comorbidity, task paradigm, and reward nature. Meta-regression analyses assessed the moderating effect of patient symptom severity and anhedonia scores. We found during reward anticipation, MDD patients showed lower activities in the lateral prefrontal-thalamus circuitry. During reward processing, patients displayed reduced activities in the right striatum and prefrontal cortex, but increased activities in the left temporal cortex. During reward learning, patients showed reduced activity in the lateral prefrontal–thalamic–striatal circuitry and the right parahippocampal–occipital circuitry but higher activities in bilateral cerebellum and the left visual cortex. MDD patients showed decreased activity in the right thalamus during both reward anticipation and learning, and in the right caudate during both reward processing and learning. Larger functional changes in MDD were observed among patients with more severe symptoms and higher anhedonia levels. The thalamic-striatal circuitry functional alterations could be the key neural mechanism underlying MDD patients overarching reward function deficiencies.

Type
Review Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alegria, A. A., Radua, J., & Rubia, K. (2016). Meta-analysis of fMRI studies of disruptive behavior disorders. American Journal of Psychiatry, 173(11), 11191130. doi: 10.1176/appi.ajp.2016.15081089CrossRefGoogle ScholarPubMed
Bègue, I., Brakowski, J., Seifritz, E., Dagher, A., Tobler, P. N., Kirschner, M., & Kaiser, S. (2022). Cerebellar and cortico-striatal-midbrain contributions to reward-cognition processes and apathy within the psychosis continuum. Schizophrenia Research, 246, 8594. doi: 10.1016/j.schres.2022.06.010CrossRefGoogle ScholarPubMed
Britton, J. C., Phan, K. L., Taylor, S. F., Welsh, R. C., Berridge, K. C., & Liberzon, I. (2006). Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage, 31(1), 397409. doi: 10.1016/j.neuroimage.2005.11.027CrossRefGoogle ScholarPubMed
Buckner, J. D., Joiner, T. E., Pettit, J. W., Lewinsohn, P. M., & Schmidt, N. B. (2008). Implications of the DSM's emphasis on sadness and anhedonia in major depressive disorder. Psychiatry Research, 159(1–2), 2530. doi: 10.1016/j.psychres.2007.05.010CrossRefGoogle ScholarPubMed
Buschman, T. J., & Miller, E. K. (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130471. doi: 10.1098/rstb.2013.0471CrossRefGoogle ScholarPubMed
Cao, B., Park, C., Subramaniapillai, M., Lee, Y., Iacobucci, M., Mansur, R. B., … McIntyre, R. S. (2019). The efficacy of vortioxetine on anhedonia in patients with major depressive disorder. Frontiers in Psychiatry, 10, 17. doi: 10.3389/fpsyt.2019.00017CrossRefGoogle ScholarPubMed
Chen, H., Liu, K., Zhang, B., Zhang, J., Xue, X., Lin, Y., … Deng, Y. (2019). More optimal but less regulated dorsal and ventral visual networks in patients with major depressive disorder. Journal of Psychiatric Research, 110, 172178. doi: 10.1016/j.jpsychires.2019.01.005CrossRefGoogle ScholarPubMed
Corlett, P. R., Mollick, J. A., & Kober, H. (2022). Meta-analysis of human prediction error for incentives, perception, cognition, and action. Neuropsychopharmacology, 47(7), 13391349. doi: 10.1038/s41386-021-01264-3CrossRefGoogle ScholarPubMed
Cox, J., & Witten, I. B. (2019). Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 20(8), 482494. doi: 10.1038/s41583-019-0189-2CrossRefGoogle ScholarPubMed
Delgado, M. R. (2007). Reward-related responses in the human Striatum. Annals of the New York Academy of Sciences, 1104(1), 7088. doi: 10.1196/annals.1390.002CrossRefGoogle ScholarPubMed
Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 6877. doi: 10.1016/j.tins.2011.11.005CrossRefGoogle ScholarPubMed
Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., … Schwartz, S. (2009). Abnormal neural filtering of irrelevant visual information in depression. The Journal of Neuroscience, 29(5), 13951403. doi: 10.1523/JNEUROSCI.3341-08.2009CrossRefGoogle ScholarPubMed
Dillon, D. G., & Pizzagalli, D. A. (2018). Mechanisms of memory disruption in depression. Trends in Neurosciences, 41(3), 137149. doi: 10.1016/j.tins.2017.12.006CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467477. doi: 10.1038/nrn3027CrossRefGoogle ScholarPubMed
Fama, R., & Sullivan, E. V. (2015). Thalamic structures and associated cognitive functions: Relations with age and aging. Neuroscience & Biobehavioral Reviews, 54, 2937. doi: 10.1016/j.neubiorev.2015.03.008CrossRefGoogle ScholarPubMed
Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O., … Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neuroscience & Biobehavioral Reviews, 88, 1625. doi: 10.1016/j.neubiorev.2018.03.002CrossRefGoogle Scholar
Furukawa, T. A., Reijnders, M., Kishimoto, S., Sakata, M., DeRubeis, R. J., Dimidjian, S., … Cuijpers, P. (2020). Translating the BDI and BDI-II into the HAMD and vice versa with equipercentile linking. Epidemiology and Psychiatric Sciences, 29, e24. doi: 10.1017/S2045796019000088CrossRefGoogle Scholar
Gjelsvik, B., Lovric, D., & Williams, J. M. G. (2018). Embodied cognition and emotional disorders: Embodiment and abstraction in understanding depression. Journal of Experimental Psychopathology, 9(3), pr.035714. doi: 10.5127/pr.035714CrossRefGoogle Scholar
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi: 10.1038/npp.2009.129CrossRefGoogle ScholarPubMed
Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185. doi: 10.1001/jamapsychiatry.2013.277CrossRefGoogle ScholarPubMed
Hill-Bowen, L. D., Flannery, J. S., & Poudel, R. (2020). Paraventricular thalamus activity during motivational conflict highlights the nucleus as a potential constituent in the neurocircuitry of addiction. The Journal of Neuroscience, 40(4), 726728. doi: 10.1523/JNEUROSCI.1945-19.2019CrossRefGoogle ScholarPubMed
Hornak, J., O'Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in Orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16(3), 463478. doi: 10.1162/089892904322926791CrossRefGoogle ScholarPubMed
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470484. doi: 10.1038/s41583-018-0029-9CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. The American Journal of Psychiatry, 175(11), 11111120. doi: 10.1176/appi.ajp.2018.17101124CrossRefGoogle ScholarPubMed
Kos, C., Van Tol, M.-J., Marsman, J.-B. C., Knegtering, H., & Aleman, A. (2016). Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders. Neuroscience & Biobehavioral Reviews, 69, 381401. doi: 10.1016/j.neubiorev.2016.08.012CrossRefGoogle ScholarPubMed
Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., … Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 43(7), 15811588. doi: 10.1038/s41386-018-0032-xCrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35(2), 199210. doi: 10.1111/1469-8986.3520199CrossRefGoogle ScholarPubMed
Liemburg, E. J., Dlabac-De Lange, J. J. L. A. S., Bais, L., Knegtering, H., Van Osch, M. J. P., Renken, R. J., & Aleman, A. (2015). Neural correlates of planning performance in patients with schizophrenia – relationship with apathy. Schizophrenia Research, 161(2–3), 367375. doi: 10.1016/j.schres.2014.11.028CrossRefGoogle ScholarPubMed
Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154162. doi: 10.1038/nn.2723CrossRefGoogle ScholarPubMed
Oldham, S., Murawski, C., Fornito, A., Youssef, G., Yücel, M., & Lorenzetti, V. (2018). The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Human Brain Mapping, 39(8), 33983418. doi: 10.1002/hbm.24184CrossRefGoogle ScholarPubMed
Phillips, J. M., Kambi, N. A., Redinbaugh, M. J., Mohanta, S., & Saalmann, Y. B. (2021). Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neuroscience & Biobehavioral Reviews, 128, 487510. doi: 10.1016/j.neubiorev.2021.06.042CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2022). Toward a better understanding of the mechanisms and pathophysiology of anhedonia: Are we ready for translation? The American Journal of Psychiatry, 179(7), 458469. doi: 10.1176/appi.ajp.20220423CrossRefGoogle Scholar
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. The American Journal of Psychiatry, 166(6), 702710. doi: 10.1176/appi.ajp.2008.08081201CrossRefGoogle ScholarPubMed
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. The British Journal of Psychiatry: The Journal of Mental Science, 195(5), 393402. doi: 10.1192/bjp.bp.108.055046CrossRefGoogle ScholarPubMed
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry: The Journal of the Association of European Psychiatrists, 27(8), 605611. doi: 10.1016/j.eurpsy.2011.04.001CrossRefGoogle ScholarPubMed
Radua, J., Rubia, K., Canales-Rodríguez, E. J., Pomarol-Clotet, E., Fusar-Poli, P., & Mataix-Cols, D. (2014). Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Frontiers in Psychiatry, 5, 13. doi: 10.3389/fpsyt.2014.00013CrossRefGoogle ScholarPubMed
Robinson, O. J., Cools, R., Carlisi, C. O., Sahakian, B. J., & Drevets, W. C. (2012). Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. American Journal of Psychiatry, 169(2), 152159. doi: 10.1176/appi.ajp.2011.11010137CrossRefGoogle ScholarPubMed
Rømer Thomsen, K., Whybrow, P. C., & Kringelbach, M. L. (2015). Reconceptualizing anhedonia: Novel perspectives on balancing the pleasure networks in the human brain. Frontiers in Behavioral Neuroscience, 9, 49. doi: 10.3389/fnbeh.2015.00049.Google ScholarPubMed
Rothkirch, M., Tonn, J., Köhler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain: A Journal of Neurology, 140(4), 11471157. doi: 10.1093/brain/awx025CrossRefGoogle ScholarPubMed
Sanderson, S., Tatt, I. D., & Higgins, J. P. (2007). Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: A systematic review and annotated bibliography. International Journal of Epidemiology, 36(3), 666676. doi: 10.1093/ije/dym018CrossRefGoogle ScholarPubMed
Sankar, A., Yttredahl, A. A., Fourcade, E. W., Mickey, B. J., Love, T. M., Langenecker, S. A., & Hsu, D. T. (2019). Dissociable neural responses to monetary and social gain and loss in women with major depressive disorder. Frontiers in Behavioral Neuroscience, 13, 149. doi: 10.3389/fnbeh.2019.00149CrossRefGoogle ScholarPubMed
Schultz, W. (2016). Reward functions of the basal ganglia. Journal of Neural Transmission, 123(7), 679693. doi: 10.1007/s00702-016-1510-0CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science (New York, N.Y.), 275(5306), 15931599. doi: 10.1126/science.275.5306.1593CrossRefGoogle ScholarPubMed
Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N. R., Dudas, R. B., … Murray, G. K. (2016). Abnormal frontostriatal activity during unexpected reward receipt in depression and schizophrenia: Relationship to anhedonia. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(8), 20012010. doi: 10.1038/npp.2015.370CrossRefGoogle ScholarPubMed
Shao, R., Gao, M., Lin, C., Huang, C.-M., Liu, H.-L., Toh, C.-H., … Lee, T. M. C. (2022). Multimodal neural evidence on the corticostriatal underpinning of suicidality in late-life depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(9), 905915. doi: 10.1016/j.bpsc.2021.11.011Google ScholarPubMed
Shepherd, A. M., Matheson, S. L., Laurens, K. R., Carr, V. J., & Green, M. J. (2012). Systematic meta-analysis of insula volume in schizophrenia. Biological Psychiatry, 72(9), 775784. doi: 10.1016/j.biopsych.2012.04.020CrossRefGoogle ScholarPubMed
Smoski, M. J., Felder, J., Bizzell, J., Green, S. R., Ernst, M., Lynch, T. R., & Dichter, G. S. (2009). fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. Journal of Affective Disorders, 118(1–3), 6978. doi: 10.1016/j.jad.2009.01.034CrossRefGoogle ScholarPubMed
Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage, 59(2), 15601570. doi: 10.1016/j.neuroimage.2011.08.065CrossRefGoogle ScholarPubMed
Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281292. doi: 10.1016/S0896-6273(03)00848-1CrossRefGoogle ScholarPubMed
Tsukiura, T., & Cabeza, R. (2008). Orbitofrontal and hippocampal contributions to memory for face–name associations: The rewarding power of a smile. Neuropsychologia, 46(9), 23102319. doi: 10.1016/j.neuropsychologia.2008.03.013CrossRefGoogle ScholarPubMed
Wacker, J., Dillon, D. G., & Pizzagalli, D. A. (2009). The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. NeuroImage, 46(1), 327337. doi: 10.1016/j.neuroimage.2009.01.058CrossRefGoogle ScholarPubMed
Wang, X., He, K., Chen, T., Shi, B., Yang, J., Geng, W., … Yu, F. (2021). Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depression and Anxiety, 38(9), 972984. doi: 10.1002/da.23188CrossRefGoogle ScholarPubMed
Yang, X., Su, Y., Yang, F., Song, Y., Yan, J., Luo, Y., & Zeng, J. (2022). Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: A voxel-based meta-analysis. Psychological Medicine, 52(15), 33093322. doi: 10.1017/S0033291722002707CrossRefGoogle Scholar
Yaple, Z. A., Tolomeo, S., & Yu, R. (2021). Abnormal prediction error processing in schizophrenia and depression. Human Brain Mapping, 42(11), 35473560. doi: 10.1002/hbm.25453CrossRefGoogle ScholarPubMed
Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13(1), 471495. doi: 10.1146/annurev-clinpsy-032816-044957CrossRefGoogle ScholarPubMed
Zoh, Y., Chang, S. W. C., & Crockett, M. J. (2022). The prefrontal cortex and (uniquely) human cooperation: A comparative perspective. Neuropsychopharmacology, 47(1), 119133. doi: 10.1038/s41386-021-01092-5CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material
Download Zhao et al. supplementary material(File)
File 671.5 KB