Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T05:40:04.562Z Has data issue: false hasContentIssue false

Cognitive performances across individuals at high genetic risk for schizophrenia, high genetic risk for bipolar disorder, and low genetic risks: a combined polygenic risk score approach

Published online by Cambridge University Press:  16 August 2022

Kazutaka Ohi*
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
Daisuke Nishizawa
Affiliation:
Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
Shunsuke Sugiyama
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Kentaro Takai
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Daisuke Fujikane
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Ayumi Kuramitsu
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
Junko Hasegawa
Affiliation:
Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
Midori Soda
Affiliation:
Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
Kiyoyuki Kitaichi
Affiliation:
Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
Ryota Hashimoto
Affiliation:
Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
Kazutaka Ikeda
Affiliation:
Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
Toshiki Shioiri
Affiliation:
Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
*
Author for correspondence: Kazutaka Ohi, E-mail: k_ohi@gifu-u.ac.jp

Abstract

Background

Individuals with schizophrenia (SCZ) and bipolar disorder (BD) display cognitive impairments, but the impairments in those with SCZ are more prominent, supported by genetic overlap between SCZ and cognitive impairments. However, it remains unclear whether cognitive performances differ between individuals at high and low genetic risks for SCZ or BD.

Methods

Using the latest Psychiatric Genomics Consortium (PGC) data, we calculated PGC3 SCZ-, PGC3 BD-, and SCZ v. BD polygenic risk scores (PRSs) in 173 SCZ patients, 70 unaffected first-degree relatives (FRs) and 196 healthy controls (HCs). Based on combinations of three PRS deciles, individuals in the genetic SCZ, genetic BD and low genetic risk groups were extracted. Cognitive performance was assessed by the Brief Assessment of Cognition in Schizophrenia.

Results

SCZ-, BD-, SCZ v. BD-PRSs were associated with case–control status (R2 = 0.020–0.061), and SCZ-PRS was associated with relative–control status (R2 = 0.023). Furthermore, individuals in the highest decile for SCZ PRSs had elevated BD-PRSs [odds ratio (OR) = 6.33] and SCZ v. BD-PRSs (OR = 1.86) compared with those in the lowest decile. Of the three genetic risk groups, the low genetic risk group contained more HCs, whereas the genetic BD and SCZ groups contained more SCZ patients (p < 0.05). SCZ patients had widespread cognitive impairments, and FRs had cognitive impairments that were between those of SCZ patients and HCs (p < 0.05). Cognitive differences between HCs in the low genetic risk group and SCZ patients in the genetic BD or genetic SCZ groups were more prominent (Cohen's d > −0.20) than those between HCs and SCZ patients in the no genetic risk group. Furthermore, SCZ patients in the genetic SCZ group displayed lower scores in verbal fluency and attention than those in the genetic BD group (d > −0.20).

Conclusions

Our findings suggest that cognitive impairments in SCZ are partially mediated through genetic loadings for SCZ but not BD.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, N., Melau, M., Jensen, H., Hastrup, L. H., Hjorthøj, C., & Nordentoft, M. (2017). The effect of duration of untreated psychosis and treatment delay on the outcomes of prolonged early intervention in psychotic disorders. NPJ Schizophrenia, 3(1), 34. doi:10.1038/s41537-017-0034-4.CrossRefGoogle ScholarPubMed
Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., … Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874. doi:10.1038/nature15393.Google ScholarPubMed
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., … Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253258. doi:10.1038/mp.2012.184.CrossRefGoogle ScholarPubMed
Calafato, M. S., Thygesen, J. H., Ranlund, S., Zartaloudi, E., Cahn, W., Crespo-Facorro, B., … Bramon, E. (2018). Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. British Journal of Psychiatry, 213(3), 535541. doi:10.1192/bjp.2018.89.CrossRefGoogle ScholarPubMed
Cholet, J., Sauvaget, A., Vanelle, J. M., Hommet, C., Mondon, K., Mamet, J. P., & Camus, V. (2014). Using the brief assessment of cognition in schizophrenia (BACS) to assess cognitive impairment in older patients with schizophrenia and bipolar disorder. Bipolar Disorder, 16(3), 326336. doi:10.1111/bdi.12171.CrossRefGoogle ScholarPubMed
Comes, A. L., Senner, F., Budde, M., Adorjan, K., Anderson-Schmidt, H., Andlauer, T. F. M., … Papiol, S. (2020). The genetic relationship between educational attainment and cognitive performance in major psychiatric disorders. Translational Psychiatry, 9(1), 210. doi:10.1038/s41398-019-0547-x.CrossRefGoogle Scholar
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., … Deary, I. J. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9(1), 2098. doi:10.1038/s41467-018-04362-x.CrossRefGoogle ScholarPubMed
de Zwarte, S. M. C., Brouwer, R. M., Agartz, I., Alda, M., Alonso-Lana, S., Bearden, C. E., … van Haren, N. E. M. (2022). Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder. Human Brain Mapping, 43(1), 414–430. doi:10.1002/hbm.25206.Google ScholarPubMed
Engen, M. J., Lyngstad, S. H., Ueland, T., Simonsen, C. E., Vaskinn, A., Smeland, O., … Melle, I. (2020). Polygenic scores for schizophrenia and general cognitive ability: Associations with six cognitive domains, premorbid intelligence, and cognitive composite score in individuals with a psychotic disorder and in healthy controls. Translational Psychiatry, 10(1), 416. doi:10.1038/s41398-020-01094-9.CrossRefGoogle ScholarPubMed
Eum, S., Hill, S. K., Rubin, L. H., Carnahan, R. M., Reilly, J. L., Ivleva, E. I., … Bishop, J. R. (2017). Cognitive burden of anticholinergic medications in psychotic disorders. Schizophrenia Research, 190, 129135. doi:10.1016/j.schres.2017.03.034.CrossRefGoogle ScholarPubMed
Fullerton, J. M., Koller, D. L., Edenberg, H. J., Foroud, T., Liu, H., Glowinski, A. L., … Nurnberger, J. I. (2015). Assessment of first and second degree relatives of individuals with bipolar disorder shows increased genetic risk scores in both affected relatives and young at-risk individuals. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 168(7), 617629. doi:10.1002/ajmg.b.32344.CrossRefGoogle ScholarPubMed
Fullerton, J. M., & Nurnberger, J. I. (2019). Polygenic risk scores in psychiatry: Will they be useful for clinicians? F1000Research, 8(F1000 Faculty Rev-1293). doi:10.12688/f1000research.18491.1.CrossRefGoogle ScholarPubMed
Glahn, D. C., Almasy, L., Barguil, M., Hare, E., Peralta, J. M., Kent, J. W. Jr., … Escamilla, M. A. (2010). Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Archives of General Psychiatry, 67(2), 168177. doi:10.1001/archgenpsychiatry.2009.184.CrossRefGoogle ScholarPubMed
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153(3), 321330. doi:10.1176/ajp.153.3.321.Google ScholarPubMed
Hill, S. K., Reilly, J. L., Keefe, R. S., Gold, J. M., Bishop, J. R., Gershon, E. S., … Sweeney, J. A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) study. American Journal of Psychiatry, 170(11), 12751284. doi:10.1176/appi.ajp.2013.12101298.CrossRefGoogle ScholarPubMed
Hochberger, W. C., Combs, T., Reilly, J. L., Bishop, J. R., Keefe, R. S. E., Clementz, B. A., … Sweeney, J. A. (2018). Deviation from expected cognitive ability across psychotic disorders. Schizophrenia Research, 192, 300307. doi:10.1016/j.schres.2017.05.019.CrossRefGoogle ScholarPubMed
Hochberger, W. C., Hill, S. K., Nelson, C. L., Reilly, J. L., Keefe, R. S., Pearlson, G. D., … Sweeney, J. A. (2016). Unitary construct of generalized cognitive ability underlying BACS performance across psychotic disorders and in their first-degree relatives. Schizophrenia Research, 170(1), 156161. doi:10.1016/j.schres.2015.11.022.CrossRefGoogle ScholarPubMed
Kaneda, Y., Sumiyoshi, T., Keefe, R., Ishimoto, Y., Numata, S., & Ohmori, T. (2007). Brief assessment of cognition in schizophrenia: Validation of the Japanese version. Psychiatry and Clinical Neurosciences, 61(6), 602609. doi:10.1111/j.1440-1819.2007.01725.x.CrossRefGoogle ScholarPubMed
Kataoka, Y., Shimada, T., Koide, Y., Okubo, H., Uehara, T., Shioiri, T., … Ohi, K. (2020). Differences in executive function among patients with schizophrenia, their unaffected first-degree relatives and healthy participants. International Journal of Neuropsychopharmacology, 23(11), 731737. doi:10.1093/ijnp/pyaa052.CrossRefGoogle ScholarPubMed
Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68(2–3), 283297. doi:10.1016/j.schres.2003.09.011.CrossRefGoogle ScholarPubMed
Keefe, R. S., Harvey, P. D., Goldberg, T. E., Gold, J. M., Walker, T. M., Kennel, C., & Hawkins, K. (2008). Norms and standardization of the brief assessment of cognition in schizophrenia (BACS). Schizophrenia Research, 102(1–3), 108115. doi:10.1016/j.schres.2008.03.024.CrossRefGoogle ScholarPubMed
Kępińska, A. P., MacCabe, J. H., Cadar, D., Steptoe, A., Murray, R. M., & Ajnakina, O. (2020). Schizophrenia polygenic risk predicts general cognitive deficit but not cognitive decline in healthy older adults. Translational Psychiatry, 10(1), 422. doi:10.1038/s41398-020-01114-8.CrossRefGoogle Scholar
Lam, M., Chen, C. Y., Li, Z., Martin, A. R., Bryois, J., Ma, X., … Huang, H. (2019). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nature Genetics, 51(12), 16701678. doi:10.1038/s41588-019-0512-x.CrossRefGoogle ScholarPubMed
Lam, M., Wang, M., Huang, W., Eng, G. K., Rapisarda, A., Kraus, M., … Lee, J. (2017). Establishing the brief assessment of cognition – Short form. Journal of Psychiatric Research, 93, 111. doi:10.1016/j.jpsychires.2017.05.006.CrossRefGoogle ScholarPubMed
Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984994. doi:10.1038/ng.2711.Google ScholarPubMed
Merikangas, K. R., Jin, R., He, J. P., Kessler, R. C., Lee, S., Sampson, N. A., … Zarkov, Z. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of General Psychiatry, 68(3), 241251. doi:10.1001/archgenpsychiatry.2011.12.CrossRefGoogle ScholarPubMed
Mullins, N., Forstner, A. J., O'Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., … Andreassen, O. A. (2021). Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 53(6), 817829. doi:10.1038/s41588-021-00857-4.CrossRefGoogle ScholarPubMed
Nakahara, S., Medland, S., Turner, J. A., Calhoun, V. D., Lim, K. O., Mueller, B. A., … van Erp, T. G. M. (2018). Polygenic risk score, genome-wide association, and gene set analyses of cognitive domain deficits in schizophrenia. Schizophrenia Research, 201, 393399. doi:10.1016/j.schres.2018.05.041.CrossRefGoogle ScholarPubMed
Ohi, K., Nishizawa, D., Muto, Y., Sugiyama, S., Hasegawa, J., Soda, M., … Ikeda, K. (2020a). Polygenic risk scores for late smoking initiation associated with the risk of schizophrenia. NPJ Schizophrenia, 6(1), 36. doi:10.1038/s41537-020-00126-z.CrossRefGoogle ScholarPubMed
Ohi, K., Nishizawa, D., Shimada, T., Kataoka, Y., Hasegawa, J., Shioiri, T., … Ikeda, K. (2020b). Polygenetic risk scores for major psychiatric disorders among schizophrenia patients, their first-degree relatives, and healthy participants. International Journal of Neuropsychopharmacology, 23(3), 157164. doi:10.1093/ijnp/pyz073.CrossRefGoogle ScholarPubMed
Ohi, K., Nishizawa, D., Sugiyama, S., Takai, K., Kuramitsu, A., Hasegawa, J., … Shioiri, T. (2021a). Polygenic risk scores differentiating schizophrenia from bipolar disorder are associated with premorbid intelligence in schizophrenia patients and healthy subjects. International Journal of Neuropsychopharmacology, 24(7), 562569. doi:10.1093/ijnp/pyab014.CrossRefGoogle ScholarPubMed
Ohi, K., Otowa, T., Shimada, M., Sugiyama, S., Tanahashi, S., Kaiya, H., … Shioiri, T. (2021b). Shared trans-ancestry genetic etiology between panic disorder and anxiety disorders. Psychiatry and Clinical Neurosciences, 75(6), 209211. doi:10.1111/pcn.13214.CrossRefGoogle ScholarPubMed
Ohi, K., Shimada, T., Kataoka, Y., Koide, Y., Yasuyama, T., Uehara, T., … Kawasaki, Y. (2019). Intelligence decline between present and premorbid IQ in schizophrenia: Schizophrenia non-affected relative project (SNARP). European Neuropsychopharmacology, 29(5), 653661. doi:10.1016/j.euroneuro.2019.03.003.CrossRefGoogle ScholarPubMed
Ohi, K., Shimada, T., Kataoka, Y., Yasuyama, T., Kawasaki, Y., Shioiri, T., & Thompson, P. M. (2020). Genetic correlations between subcortical brain volumes and psychiatric disorders. British Journal of Psychiatry, 216(5), 280283. doi:10.1192/bjp.2019.277.CrossRefGoogle ScholarPubMed
Ohi, K., Shimada, T., Nemoto, K., Kataoka, Y., Yasuyama, T., Kimura, K., … Kawasaki, Y. (2017a). Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume. NeuroImage: Clinical, 16, 248256. doi:10.1016/j.nicl.2017.08.008.CrossRefGoogle ScholarPubMed
Ohi, K., Shimada, T., Yasuyama, T., Uehara, T., & Kawasaki, Y. (2017b). Variability of 128 schizophrenia-associated gene variants across distinct ethnic populations. Translational Psychiatry, 7(1), e988. doi:10.1038/tp.2016.260.CrossRefGoogle ScholarPubMed
Ohi, K., Sumiyoshi, C., Fujino, H., Yasuda, Y., Yamamori, H., Fujimoto, M., … Hashimoto, R. (2017c). A brief assessment of intelligence decline in schizophrenia as represented by the difference between current and premorbid intellectual quotient. Frontiers in Psychiatry, 8, 293. doi:10.3389/fpsyt.2017.00293.CrossRefGoogle ScholarPubMed
Ohi, K., Sumiyoshi, C., Fujino, H., Yasuda, Y., Yamamori, H., Fujimoto, M., … Hashimoto, R. (2018). Genetic overlap between general cognitive function and schizophrenia: A review of cognitive GWASs. International Journal of Molecular Sciences, 19(12), 3822. doi:10.3390/ijms19123822.CrossRefGoogle ScholarPubMed
Ohi, K., Takai, K., Kuramitsu, A., Sugiyama, S., Soda, M., Kitaichi, K., & Shioiri, T. (2021c). Causal associations of intelligence with schizophrenia and bipolar disorder: A Mendelian randomization analysis. European Psychiatry, 64(1), e61. doi:10.1192/j.eurpsy.2021.2237.CrossRefGoogle ScholarPubMed
Ohi, K., Takai, K., Sugiyama, S., Kitagawa, H., Kataoka, Y., Soda, M., … Shioiri, T. (2021d). Intelligence decline across major depressive disorder, bipolar disorder, and schizophrenia. CNS Spectrums, 17. doi:10.1017/s1092852921000298.CrossRefGoogle ScholarPubMed
Pearlson, G. D. (2015). Etiologic, phenomenologic, and endophenotypic overlap of schizophrenia and bipolar disorder. Annual Review of Clinical Psychology, 11, 251281. doi:10.1146/annurev-clinpsy-032814-112915.CrossRefGoogle ScholarPubMed
Pedersen, C. B., Mors, O., Bertelsen, A., Waltoft, B. L., Agerbo, E., McGrath, J. J., … Eaton, W. W. A. (2014). A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 71(5), 573581. doi:10.1001/jamapsychiatry.2014.16.CrossRefGoogle ScholarPubMed
Richards, A. L., Pardiñas, A. F., Frizzati, A., Tansey, K. E., Lynham, A. J., Holmans, P., … Walters, J. T. R. (2020). The relationship between polygenic risk scores and cognition in schizophrenia. Schizophrenia Bulletin, 46(2), 336344. doi:10.1093/schbul/sbz061.Google ScholarPubMed
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T., Farh, K. H., Holmans, P. A., … O'Donovan, M. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421427. doi:10.1038/nature13595.Google Scholar
Ruderfer, D., Ripke, S., McQuillin, A., Boocock, J., Stahl, E., Pavlides, J., … Kendler, K. S. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell, 173(7), 17051715 e1716. doi:10.1016/j.cell.2018.05.046.CrossRefGoogle Scholar
Schaefer, J., Giangrande, E., Weinberger, D. R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophrenia Research, 150(1), 4250. doi:10.1016/j.schres.2013.07.009.CrossRefGoogle ScholarPubMed
Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., … Robinson, E. B. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 8(1), 78. doi:10.1038/s41398-018-0124-8.CrossRefGoogle ScholarPubMed
Smoller, J. W., & Finn, C. T. (2003). Family, twin, and adoption studies of bipolar disorder. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 123c(1), 4858. doi:10.1002/ajmg.c.20013.CrossRefGoogle ScholarPubMed
Solé, B., Jiménez, E., Torrent, C., Del Mar Bonnin, C., Torres, I., Reinares, M., … Martínez-Arán, A. (2016). Cognitive variability in bipolar II disorder: Who is cognitively impaired and who is preserved. Bipolar Disorder, 18(3), 288299. doi:10.1111/bdi.12385.CrossRefGoogle ScholarPubMed
Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., … Sklar, P. (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 51(5), 793803. doi:10.1038/s41588-019-0397-8.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 11871192. doi:10.1001/archpsyc.60.12.1187.CrossRefGoogle ScholarPubMed
Toulopoulou, T., Zhang, X., Cherny, S., Dickinson, D., Berman, K. F., Straub, R. E., … Weinberger, D. R. (2019). Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain, 142(2), 471485. doi:10.1093/brain/awy279.CrossRefGoogle ScholarPubMed
Trotta, A., Murray, R. M., & MacCabe, J. H. (2015). Do premorbid and post-onset cognitive functioning differ between schizophrenia and bipolar disorder? A systematic review and meta-analysis. Psychological Medicine, 45(2), 381394. doi:10.1017/s0033291714001512.CrossRefGoogle ScholarPubMed
Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., … O'Donovan, M. C. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604(7906), 502-508. doi:10.1038/s41586-022-04434-5.CrossRefGoogle ScholarPubMed
Xavier, R. M., Dungan, J. R., Keefe, R. S. E., & Vorderstrasse, A. (2018). Polygenic signal for symptom dimensions and cognitive performance in patients with chronic schizophrenia. Schizophrenia Research: Cognition, 12, 1119. doi:10.1016/j.scog.2018.01.001.Google ScholarPubMed
Zheutlin, A. B., Dennis, J., Karlsson Linnér, R., Moscati, A., Restrepo, N., Straub, P., … Smoller, J. W. (2019). Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. American Journal of Psychiatry, 176(10), 846855. doi:10.1176/appi.ajp.2019.18091085.CrossRefGoogle Scholar
Zheutlin, A. B., & Ross, D. A. (2018). Polygenic risk scores: What are they good for? Biological Psychiatry, 83(11), e51e53. doi:10.1016/j.biopsych.2018.04.007.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ohi et al. supplementary material

Ohi et al. supplementary material

Download Ohi et al. supplementary material(File)
File 376.7 KB