Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-05T16:40:17.966Z Has data issue: false hasContentIssue false

Clinical Research Centre Division of Psychiatry 1974–19771

Published online by Cambridge University Press:  09 July 2009

Extract

The Clinical Research Centre was established by the Medical Research Council as a major focus for patient-orientated research and as the clinical counterpart of the National Institute for Medical Research at Mill Hill which for 40 years has been the Council's largest establishment for basic research. In cooperation with the Department of Health and Social Security the Council embarked upon the Northwick Park project in which the Clinical Research Centre is closely integrated with a district general hospital – Northwick Park Hospital – built at the same time, and designed to serve the population of the Harrow Health District. Across each of the major specialties the Clinical Research Centre has Divisions with varying degrees of involvement in patient care. While there are 600 (District) beds allocated to local District needs, there are further 200 (National) beds which, in principle, are available for investigating and treating patients from outside the District admitted for research purposes. In practice, the extent to which research takes place on patients admitted for special investigations and, on the other hand, on patients admitted from the District as part of the service commitment, varies widely with specialty. In psychiatry it is predominantly the case that patients under investigation have been admitted from the District.

Type
Research Report
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anlezark, G. M., Crow, T. J. & Greenway, A. P. (1973). Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 181, 682684.CrossRefGoogle ScholarPubMed
Anlezark, G. M., Walter, D. S., Arbuthnott, G. W., Crow, T. J. & Eccleston, D. (1975). The relationship between noradrenaline turnover in cerebral cortex and electrical self-stimulation through electrodes in the region of locus coeruleus. Journal of Neurochemistry 24, 677681.Google ScholarPubMed
Bleuler, E. (1950). Dementia Praecox and the Group of Schizophrenias (trans. Zinkin, J.). International Universities Press: New York.Google Scholar
Bowers, M. B. (1974). Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry 31, 5054.CrossRefGoogle ScholarPubMed
Bradbury, A. F., Smyth, D. G., Snell, C. R., Deakin, J. F. W. & Wendlandt, S. (1977). Comparison of the analgesic properties of lipotropin C-fragment and stabilized enkephalins in the rat. Biochemical and Biophysical Research Communications 74, 748754.CrossRefGoogle ScholarPubMed
Brockington, I., Crow, T. J., Johnstone, E. C. & Owen, F. (1976). An investigation of platelet monoamine oxidase activity in schizophrenia and schizo-affective psychosis. In Monoamine Oxidase and its Inhibition, Ciba Foundation Symposium No. 39 (ed. Tipton, K. F. & Youdim, M. B. H.), pp. 353362. Elsevier: Amsterdam.Google Scholar
Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L. & Greengard, P. (1974). Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proceedings of the National Academy of Sciences (USA) 71, 11131117.CrossRefGoogle Scholar
Cotes, P. M., Crow, T. J. & Johnstone, E. C. (1978 a). Serum prolactin as an index of dopamine receptor blockade in acute schizophrenia. British Journal of Clinical Pharmacology 4, 651P.Google Scholar
Cotes, P. M., Crow, T. J., Johnstone, E. C., Bartlett, W. & Bourne, R. C. (1978 b). Neuroendocrine changes in acute schizophrenia as a function of clinical state and neuroleptic medication. Psychological Medicine (in the press).CrossRefGoogle Scholar
Cross, A. J., Crow, T. J., Glover, V., Lofthouse, R., Owen, F. & Riley, G. J. (1977 a). Monoamine oxidase activity in postmortem brains of schizophrenics and controls. British Journal of Clinical Pharmacology 4, 719.Google Scholar
Cross, A. J., Crow, T. J., Killpack, W. S., Longden, A., Owen, F. & Riley, G. J. (1977 b). A comparison of dopamine-β-hydroxylase activity in postmortem brains in schizophrenics and controls. British Journal of Clinical Pharmacology 4, 720.Google Scholar
Cross, A. J., Crow, T. J., Killpack, W. S., Longden, A., Owen, F. & Riley, G. J. (1978). The activities of brain dopamine-β-hydroxylase and catechol-o-methyl transferase in schizophrenics and controls. Psychopharmacology (in the press).CrossRefGoogle Scholar
Crow, T. J. (1972 a). Catecholamine-containing neurones and electrical self-stimulation. 1. A review of some data. Psychological Medicine 2, 414421.CrossRefGoogle ScholarPubMed
Crow, T. J. (1972 b). A map of the rat mesencephalon for electrical self-stimulation. Brain Research 36, 265273.CrossRefGoogle ScholarPubMed
Crow, T. J. (1973). Catecholamine-containing neurones and electrical self-stimulation. 2. A theoretical interpretation and some psychiatric implications. Psychological Medicine 3, 6673.CrossRefGoogle ScholarPubMed
Crow, T. J. (1976). Possible relationships between afferent pathways and ascending catecholamine neurones: a theory of the phylogenetic origins of reward mechanisms. In Brain Stimulation Reward (ed. Wauquier, A. and Rolls, E. T.), pp. 587591. North-Holland: Amsterdam.Google Scholar
Crow, T. J. (1977 a). The neuroanatomy of intracranial self-stimulation: a general catecholamine hypothesis. Neurosciences Research Program Bulletin 15, 195205.Google Scholar
Crow, T. J. (1977 b). Neurotransmitter-related pathways: the structure and function of central monoamine neurones. In Biochemical Correlates of Brain Structure and Function (ed. Davison, A. N.), pp. 137174. Academic Press: London.CrossRefGoogle Scholar
Crow, T. J. & Deakin, J. F. W. (1977 a). Do 5-HT neurones support self-stimulation? British Journal of Pharmacology 60, 320P.Google ScholarPubMed
Crow, T. J. & Deakin, J. F. W. (1977 6). Role of tryptaminergic mechanisms in the elements of the behavioural syndrome evoked by tryptophan and a monoamine oxidase inhibitor. British Journal of Pharmacology 59, 461 P.Google Scholar
Crow, T. J. & Deakin, J. F. W. (1978 a). Brain reinforcement centres and psychoactive drugs. Recent Advances in Alcohol and Drug Problems, vol. 4 (in the press).CrossRefGoogle Scholar
Crow, T. J. & Deakin, J. F. W. (1978 b). Monoamines and the psychoses. In Chemical Influences in Behaviour (ed. Cooper, S. J. and Brown, K.) (in the press).Google Scholar
Crow, T. J. & Gillbe, C. (1974). Brain dopamine and behaviour. A critical analysis of the relationship between dopamine antagonism and therapeutic efficacy of neuroleptic drugs. Journal of Psychiatric Research 11, 163172.CrossRefGoogle ScholarPubMed
Crow, T. J. & Johnstone, E. C. (1977). Stereochemical specificity in the antipsychotic effects of flupenthixol in man. British Journal of Pharmacology 59, 466P.Google ScholarPubMed
Crow, T. J. & Mitchell, W. S. (1975). Subjective age in chronic schizophrenia: evidence for a sub-group of patients with defective learning capacity? British Journal of Psychiatry 126, 360363.CrossRefGoogle ScholarPubMed
Crow, T. J. & Stevens, M. (1978). Age disorientation in chronic schizophrenia: the nature of the cognitive deficit. British Journal of Psychiatry (in the press).CrossRefGoogle Scholar
Crow, T. J. & Wendlandt, S. (1976). Impaired acquisition of a passive avoidance response after lesions induced in the locus coeruleus by 6-OH dopamine. Nature 259, 4244.CrossRefGoogle ScholarPubMed
Crow, T. J., Spear, P. J. & Arbuthnott, G. W. (1972). Intracranial self-stimulation with electrodes in the region of the locus coeruleus. Brain Research 36, 275287.CrossRefGoogle ScholarPubMed
Crow, T. J., Deakin, J. F. W., Johnstone, E. C. & Longden, A. (1976 a). Dopamine and schizophrenia. Lancet ii, 563566.CrossRefGoogle Scholar
Crow, T. J., Johnstone, E. C. & McClelland, H. A. (1976 b). The coincidence of schizophrenia and Parkinsonism: some neurochemical implications. Psychological Medicine 6, 227233.CrossRefGoogle ScholarPubMed
Crow, T. J., Deakin, J. F. W. & Longden, A. (1977 a). The nucleus accumbens – possible site of antipsychotic action of neuroleptic drugs? Psychological Medicine 7, 213221.CrossRefGoogle ScholarPubMed
Crow, T. J., Frith, C. & Johnstone, E. C. (1977 b). The clinical effects of the isomers of flupenthixol – the consequences of dopamine receptor blockade in acute schizophrenia. British Journal of Clinical Pharmacology 4, 648P.CrossRefGoogle ScholarPubMed
Crow, T. J., Baker, H. F., Cross, A. J., Glover, V., Joseph, M. H., Killpack, W. S., Lofthouse, R., Longden, A., Owen, F. & Riley, G. J. (1978 a). Monoamine mechanisms in chronic schizophrenia. (Submitted for publication.)CrossRefGoogle Scholar
Crow, T. J., Deakin, J. F. W., File, S. E., Longden, A. & Wendlandt, S. (1978 b). The locus coeruleus noradrenergic system — evidence against a role in attention, habituation, anxiety and motor activity. Brain Research (in the press).CrossRefGoogle Scholar
Crow, T. J., Johnstone, E. C., Longden, A. & Owen, F. (1978 c). Dopamine and schizophrenia.Proceedings of the International Society for Neurochemistry Symposium on Dopamine,Southampton,September 1977 (in the press).Google Scholar
Crow, T. J., Owen, F., Cross, A. J., Lofthouse, R. & Longden, A. (1978 d). Brain biochemistry and schizophrenia. Lancet i, 3637.Google Scholar
Farley, I. J., Price, K. S. & Hornykiewicz, O. (1977). Dopamine in the limbic regions of the human brain: normal and abnormal. In Non-Striatal Dopamine (ed. Costa, E. and Gessa, G. L.), pp. 5764. Raven Press: New York.Google Scholar
Fuxe, K. & Hökfelt, T. (1967). The influence of central catecholamine neurones on the hormone secretion from the anterior and posterior pituitary. Neurosecretion: IVth International Symposium on Neurosecretion (ed. Stutinsky, F.), pp. 166177.Google Scholar
Frith, C. D. (1977). Two kinds of cognitive deficit associated with chronic schizophrenia. Psychological Medicine 7, 171173.CrossRefGoogle ScholarPubMed
Gaddum, J. H. (1954). Drugs antagonistic to 5-hydroxy-tryptamine. In Ciba Foundation Symposium on Hypertension (ed. Wolstenholme, G. W.), pp. 7577. Little Brown: Boston.Google Scholar
Geisow, M. J., Deakin, J. F. W., Dostrovsky, J. O. & Smyth, D. G. (1977). Analgesic activity of lipotropin C fragment depends on carboxyl terminal tetrapeptide. Nature 269, 167168.CrossRefGoogle ScholarPubMed
Green, A. R., Woods, H. F. & Joseph, M. H. (1976). Tryptophan metabolism in the isolated perfused liver of the rat: effects of tryptophan concentration, hydrocortisone and allopurinol on tryptophan pyrrolase activity and kynurenine formation. British Journal of Pharmacology 57, 103114.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J. & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet ii, 924926.CrossRefGoogle Scholar
Johnstone, E. C., Crow, T. J. & Mashiter, K. (1977). Anterior pituitary hormone secretion in chronic schizophrenia – an approach to neurohumoural mechanisms. Psychological Medicine 7, 223228.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., Frith, C. D., Carney, M. W. P. & Price, J. S. (1978 a). Mechanism of the antipsychotic effect in acute schizophrenia. Lancet i, 848851.CrossRefGoogle Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Stevens, M., Kreel, L. & Husband, J. (1978 b). The dementia of dementia praecox. Acta Psychiatrica Scandinavica (in the press).CrossRefGoogle Scholar
Joseph, M. H. (1977). The determination of kynurenine by gas-liquid chromatography; evidence for its presence in rat brain. British Journal of Pharmacology 59, 525P.Google ScholarPubMed
Joseph, M. H. & Baker, H. F. (1976). The determination of 5-hydroxytryptophan and its metabolites in plasma following administration to man. Clinica Chimica Acta 72, 125131.CrossRefGoogle ScholarPubMed
Joseph, M. H. & Risby, D. (1975). The determination of kynurenine in plasma. Clinica Chimica Acta 63, 197204.CrossRefGoogle ScholarPubMed
Joseph, M. H., Baker, H. F., Johnstone, E. C. & Crow, T. J. (1976). Determination of 3-methoxy-4-hydroxyphenyl-glycol conjugates in urine. Application to the study of central noradrenaline metabolism in unmedicated chronic schizophrenic patients. Psychopharmacology 51, 4751.CrossRefGoogle Scholar
Joseph, M. H., Baker, H. F. & Lawson, A. M. (1978). Positive identification of kynurenine in rat and human brain. Biochemical Society Transactions 6, 123126.CrossRefGoogle ScholarPubMed
Kebabian, J. W., Petzold, G. L. & Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the ‘dopamine receptor’. Proceedings of the National Academy of Sciences (USA) 69, 21452149.CrossRefGoogle Scholar
Miller, R. J., Horn, A. S. & Iversen, L. L. (1974). The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′, 5′-monophosphate production in rat neostriatum and limbic forebrain. Molecular Pharmacology 10, 759766.Google Scholar
Murphy, D. L. & Wyatt, R. J. (1972). Reduced MAO activity in blood platelets from schizophrenic patients. Nature 238, 225226.CrossRefGoogle ScholarPubMed
Owen, F., Bourne, R. C., Crow, T. J., Johnstone, E. C., Bailey, A. R. & Hershon, H. I. (1976). Platelet monoamine oxidase in schizophrenia: an investigation in drug-free chronic hospitalized patients. Archives of General Psychiatry 33, 13701373.CrossRefGoogle ScholarPubMed
Owen, F., Acker, W., Bourne, R. C., Frith, C. D. & Riley, G. J. (1977 a). The effect on human monoamine oxidase activity of subcutaneous injections of adrenaline. Biochemical Pharmacology 26, 20652067.CrossRefGoogle ScholarPubMed
Owen, F., Bourne, R. C., Lai, J. C. K. & Williams, R. (1977 b). The heterogeneity of monoamine oxidase in distinct populations of rat brain mitochondria. Biochemical Pharmacology 26, 289292.CrossRefGoogle ScholarPubMed
Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poulter, M. & Riley, G. J. (1978). Increased dopamine receptor sensitivity in schizophrenia. Lancet (in the press).CrossRefGoogle Scholar
Post, R. M., Fink, E., Carpenter, W. T. & Goodwin, F. K. (1975). Cerebrospinal fluid amine metabolites in acute schizophrenia. Archives of General Psychiatry 32, 10631069.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1965). Special antagonism of amphetamine-induced abnormal behaviour. Inhibition of stereotyped activity with increase of some normal activities. Psychopharmacologia 7, 416422.CrossRefGoogle ScholarPubMed
Ridley, R. M. (1978). The behavioural effects of (+)—amphetamine and apomorphine in the marmoset. British Journal of Pharmacology 62, 393P.Google ScholarPubMed
Ridley, R. M., Baker, H. F. & Crow, T. J. (1978). Behavioural effects of amphetamines and related compounds: the importance of species differences as demonstrated by a study in the marmoset. In Amphetamine and Related Stimulants (ed. Caldwell, J.) (in the press).Google Scholar
Ritter, S. & Stein, L. (1973). Self-stimulation of noradrenergic cell group (A6) in the locus coeruleus of rats. Journal of Comparative and Physiological Psychology 85, 443452.CrossRefGoogle ScholarPubMed
Robinson, J. D. & Risby, D. (1977). Radioimmunoassay for flupenthixol in plasma. Clinical Chemistry 23, 20852088.CrossRefGoogle ScholarPubMed
Segal, M. & Bloom, F. E. (1976). The action of norepinphrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat. Brain Research 107, 499511.CrossRefGoogle Scholar
Stein, L. (1964). Reciprocal action of reward and punishment mechanisms. In The Role of Pleasure in Behaviour (ed. Heath, R. G.), pp. 133139. Harper & Row: New York.Google Scholar
Stein, L. & Wise, C. D. (1971). Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171, 10321036.CrossRefGoogle Scholar
Stevens, M., Crow, T. J., Bowman, M. & Coles, E. C. (1978). Age disorientation in chronic schizophrenia: a constant prevalence of 25% in a mental hospital population? British Journal of Psychiatry (in the press).CrossRefGoogle Scholar
Tye, N. C., Everitt, B. J. & Iversen, S. D. (1977). 5-Hydroxy-tryptamine and punishment. Nature 268, 741743.CrossRefGoogle ScholarPubMed
Waddington, J. L. (1977 a). Specificity of monoamine neurotoxins: rotational responses to dopaminergic agonists after unilateral 6-OHDA and 5, 6-DHT lesions of the median forebrain bundle. British Journal of Pharmacology 59, 465P466P.Google ScholarPubMed
Waddington, J. L. (1977 a). GABA-like properties of flurazepam and baclofen suggested by rotational behaviour following unilateral intranigral injection: a comparison with the GABA-agonist muscimol. British Journal of Pharmacology 60(2), 263264P.Google ScholarPubMed
Wendlandt, S., Crow, T. J. & Stirling, R. V. (1977). The involvement of the noradrenergic system arising from the locus coeruleus in the postnatal development of the cortex in rat brain. Brain Research 125, 19.CrossRefGoogle ScholarPubMed