Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T12:26:19.049Z Has data issue: false hasContentIssue false

Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment

Published online by Cambridge University Press:  21 March 2024

Rajan Kashyap*
Affiliation:
Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Bharath Holla
Affiliation:
Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
Sagarika Bhattacharjee
Affiliation:
Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Eesha Sharma
Affiliation:
Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Urvakhsh Meherwan Mehta
Affiliation:
Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Nilakshi Vaidya
Affiliation:
Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
Rose Dawn Bharath*
Affiliation:
Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Pratima Murthy
Affiliation:
Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
Debashish Basu
Affiliation:
Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
Subodh Bhagyalakshmi Nanjayya
Affiliation:
Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
Rajkumar Lenin Singh
Affiliation:
Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
Roshan Lourembam
Affiliation:
Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
Amit Chakrabarti
Affiliation:
Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
Kamakshi Kartik
Affiliation:
Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
Kartik Kalyanram
Affiliation:
Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
Kalyanaraman Kumaran
Affiliation:
Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India MRC Lifecourse Epidemiology Unit, University of Southampton, UK
Ghattu Krishnaveni
Affiliation:
Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
Murali Krishna
Affiliation:
Health Equity Cluster, Institute of Public Health, Bangalore, India
Rebecca Kuriyan
Affiliation:
Division of Nutrition, St John's Research Institute, Bengaluru, India
Sunita Simon Kurpad
Affiliation:
Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
Sylvane Desrivieres
Affiliation:
SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
Meera Purushottam
Affiliation:
Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
Gareth Barker
Affiliation:
Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
Dimitri Papadopoulos Orfanos
Affiliation:
NeuroSpin, CEA, Université Paris-Saclay, Paris, France
Matthew Hickman
Affiliation:
Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
Jon Heron
Affiliation:
Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
Mireille Toledano
Affiliation:
MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
Gunter Schumann
Affiliation:
Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
Vivek Benegal
Affiliation:
Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
for the Consortium on Vulnerability to Externalizing Disorders and Addictions (cVEDA)
Affiliation:
Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
*
Corresponding author: Rajan Kashyap; Email: rajankashyap6@gmail.com; Rose Dawn Bharath; Email: cns.researchers@gmail.com; drrosedawnbharath@gmail.com
Corresponding author: Rajan Kashyap; Email: rajankashyap6@gmail.com; Rose Dawn Bharath; Email: cns.researchers@gmail.com; drrosedawnbharath@gmail.com

Abstract

Background

Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development.

Methods

Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6–23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects).

Results

Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities.

Conclusion

Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equal Contribution.

References

Acheson, A., Vincent, A. S., Cohoon, A. J., & Lovallo, W. R. (2021). Early life adversity and increased antisocial and depressive tendencies in young adults with family histories of alcohol and other substance use disorders: Findings from the family health patterns project. Addictive Behaviors Reports, 15, 100401. doi: 10.1016/j.abrep.2021.100401CrossRefGoogle ScholarPubMed
Andersen, S. L. (2022). Neuroinflammation, early life adversity, and brain development. Harvard Review of Psychiatry, 30(1), 2439. doi: 10.1097/HRP.0000000000000325CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional–anatomic fractionation of the brain's default network. Neuron, 65(4), 550562. doi: 10.1016/j.neuron.2010.02.005CrossRefGoogle ScholarPubMed
Avants, B. B., Tustison, N., & Song, G. (2009). Advanced normalization tools (ANTS). The Insight Journal, 2(365), 135. doi: https://doi.org/10.54294/uvnhinGoogle Scholar
Barch, D. M., Belden, A. C., Tillman, R., Whalen, D., & Luby, J. L. (2018). Early childhood adverse experiences, inferior frontal gyrus connectivity, and the trajectory of externalizing psychopathology. Journal of the American Academy of Child & Adolescent Psychiatry, 57(3), 183190. doi: 10.1016/j.jaac.2017.12.011CrossRefGoogle ScholarPubMed
Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. The Journal of General Psychology, 39, 1522. doi: 10.1080/00221309.1948.9918159CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537541. doi: 10.1002/mrm.1910340409CrossRefGoogle ScholarPubMed
Blakemore, S.-J., & Mills, K. L. (2014). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187207. doi: 10.1146/annurev-psych-010213-115202CrossRefGoogle ScholarPubMed
Bochaver, A. A., Korneev, A. A., & Khlomov, K. D. (2022). School climate questionnaire: A new tool for assessing the school environment. Frontiers in Psychology, 13, 871466. doi: 10.3389/fpsyg.2022.871466CrossRefGoogle ScholarPubMed
Brunton, B. W., Johnson, L. A., Ojemann, J. G., & Kutz, J. N. (2016). Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. Journal of Neuroscience Methods, 258, 115. doi: 10.1016/j.jneumeth.2015.10.010CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124(1), 138. doi: 10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832. doi: 10.1038/nn.3423CrossRefGoogle ScholarPubMed
Cardozo, P. L., de Lima, I. B., Maciel, E. M., Silva, N. C., Dobransky, T., & Ribeiro, F. M. (2019). Synaptic elimination in neurological disorders. Current Neuropharmacology, 17(11), 1071. doi: 10.2174/1570159X17666190603170511CrossRefGoogle ScholarPubMed
Casorso, J., Kong, X., Chi, W., Van De Ville, D., Yeo, B. T., & Liégeois, R. (2019). Dynamic mode decomposition of resting-state and task fMRI. Neuroimage, 194, 4254. doi: 10.1016/j.neuroimage.2019.03.019CrossRefGoogle ScholarPubMed
Chahal, R., Miller, J. G., Yuan, J. P., Buthmann, J. L., & Gotlib, I. H. (2022). An exploration of dimensions of early adversity and the development of functional brain network connectivity during adolescence: Implications for trajectories of internalizing symptoms. Development and Psychopathology, 34(2), 557571. doi: 10.1017/S0954579421001814CrossRefGoogle ScholarPubMed
Chattopadhyaya, B., & Cristo, G. D. (2012). GABAErgic circuit dysfunctions in neurodevelopmental disorders. Frontiers in psychiatry, 3, 51. doi: 10.3389/fpsyt.2012.00051CrossRefGoogle ScholarPubMed
Chen, J., Tam, A., Kebets, V., Orban, C., Ooi, L. Q. R., Asplund, C. L., … Yeo, B. T. T. (2022). Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nature Communications, 13(1), 2217. doi: 10.1038/s41467-022-29766-8CrossRefGoogle Scholar
Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. doi: https://escholarship.mcgill.ca/concern/theses/05741s554Google Scholar
Croschere, J., Dupey, L., Hilliard, M., Koehn, H., & Mayra, K. (2012). The effects of time of day and practice on cognitive abilities: Forward and backward Corsi block test and digit span. PEBL Technical Report Series. Retrieved from http://sites.google.com/site/pebltechnicalreports/home/2012/pebl-technicalreport-2012-03Google Scholar
Dajani, D. R., Burrows, C. A., Odriozola, P., Baez, A., Nebel, M. B., Mostofsky, S. H., & Uddin, L. Q. (2019). Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders. NeuroImage: Clinical, 21, 101678. doi: 10.1016/j.nicl.2019.101678CrossRefGoogle ScholarPubMed
Davis, K., Hirsch, E., Gee, D., Andover, M., & Roy, A. K. (2022). Mediating role of the default mode network on parental acceptance/warmth and psychopathology in youth. Brain Imaging and Behavior, 16(5), 22292238. doi: 10.1007/s11682-022-00692-zCrossRefGoogle ScholarPubMed
Dégeilh, F., Bernier, A., Leblanc, É, Daneault, V., & Beauchamp, M. H. (2018). Quality of maternal behaviour during infancy predicts functional connectivity between default mode network and salience network 9 years later. Developmental Cognitive Neuroscience, 34, 5362. doi: 10.1016/j.dcn.2018.06.003CrossRefGoogle ScholarPubMed
Dias, T. G. C., Iyer, S. P., Carpenter, S. D., Cary, R. P., Wilson, V. B., Mitchell, S. H., … Fair, D. A. (2015). Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Developmental cognitive neuroscience, 11, 155174. doi: 10.1016/j.dcn.2014.12.005CrossRefGoogle Scholar
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., … Etkin, A. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 2838. doi: 10.1038/nm.4246CrossRefGoogle ScholarPubMed
Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & Menon, V. (2015). Brain structural integrity and intrinsic functional connectivity forecast 6 year longitudinal growth in children's numerical abilities. Journal of Neuroscience, 35(33), 1174311750. doi: 10.1523/JNEUROSCI.0216-15.2015CrossRefGoogle ScholarPubMed
Fair, D. A., Dosenbach, N. U. F., Moore, A. H., Satterthwaite, T. D., & Milham, M. P. (2021). Developmental cognitive neuroscience in the Era of networks and big data: Strengths, weaknesses, opportunities, and threats. Annual Review of Developmental Psychology, 3(1), 249275. doi: 10.1146/annurev-devpsych-121318-085124CrossRefGoogle Scholar
Fair, D. A., Posner, J., Nagel, B. J., Bathula, D., Dias, T. G. C., Mills, K. L., … Nigg, J. T. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 10841091. doi: 10.1016/j.biopsych.2010.07.003CrossRefGoogle ScholarPubMed
Feczko, E., & Fair, D. A. (2020). Methods and challenges for assessing heterogeneity. Biological Psychiatry, 88(1), 917. doi: 10.1016/j.biopsych.2020.02.015CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319334. doi: 10.1016/0022-3956(82)90038-3CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (2019). Reprint of: Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The adverse childhood experiences (ACE) study. American Journal of Preventive Medicine, 56(6), 774786. doi: 10.1016/s0749-3797(98)00017-8CrossRefGoogle ScholarPubMed
Fernandes, G. S., Spiers, A., Vaidya, N., Zhang, Y., Sharma, E., Holla, B., … Chakrabarti, A. (2021). Adverse childhood experiences and substance misuse in young people in India: Results from the multisite cVEDA cohort. BMC Public Health, 21(1), 113. doi: 10.1186/s12889-021-11892-5CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664. doi: https://doi.org/10.1038/nn.4135CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700. doi: 10.1038/nrn2201CrossRefGoogle ScholarPubMed
Gao, W., Lin, W., Grewen, K., & Gilmore, J. H. (2017). Functional connectivity of the infant human brain: Plastic and modifiable. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 23(2), 169184. doi: 10.1177/1073858416635986CrossRefGoogle ScholarPubMed
Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 67906795. doi: 10.1073/pnas.0811221106CrossRefGoogle ScholarPubMed
Gee, D. G. (2021). Early adversity and development: Parsing heterogeneity and identifying pathways of risk and resilience. American Journal of Psychiatry, 178(11), 9981013. doi: 10.1176/appi.ajp.2021.21090944CrossRefGoogle ScholarPubMed
Germann, M., Brederoo, S. G., & Sommer, I. E. (2021). Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Current Opinion in Psychiatry, 34(3), 222. doi: 10.1097/YCO.0000000000000696CrossRefGoogle ScholarPubMed
Gogolla, N., LeBlanc, J. J., Quast, K. B., Südhof, T. C., Fagiolini, M., & Hensch, T. K. (2009). Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders, 1, 172181. doi: 10.1007/s11689-009-9023-xCrossRefGoogle ScholarPubMed
Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9), 822829. doi: 10.1001/jamapediatrics.2015.1475CrossRefGoogle ScholarPubMed
Hanson, J., Adluru, N., Chung, M., Alexander, A., Davidson, R., & Pollak, S. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84(5), 15661578 doi: 10.1111/cdev.12069CrossRefGoogle ScholarPubMed
He, J., Yan, X., Wang, R., Zhao, J., Liu, J., Zhou, C., & Zeng, Y. (2022). Does childhood adversity lead to drug addiction in adulthood? A study of serial mediators based on resilience and depression. Frontiers in Psychiatry, 13, 871459. doi: 10.3389/fpsyt.2022.871459CrossRefGoogle ScholarPubMed
Holla, B., Taylor, P. A., Glen, D. R., Lee, J. A., Vaidya, N., Mehta, U. M., … Rao, N. P. (2020). A series of five population-specific Indian brain templates and atlases spanning ages 6–60 years. Human Brain Mapping, 41(18), 51645175. doi: 10.1002/hbm.25182CrossRefGoogle ScholarPubMed
Holz, N. E., Berhe, O., Sacu, S., Schwarz, E., Tesarz, J., Heim, C. M., & Tost, H. (2022). Early social adversity altered brain functional connectivity and mental health. Biological Psychiatry, 93(5), 430441. doi: 10.1016/j.biopsych.2022.10.019CrossRefGoogle ScholarPubMed
Holz, N. E., Zabihi, M., Kia, S. M., Monninger, M., Aggensteiner, P.-M., Siehl, S., … Marquand, A. F. (2023). A stable and replicable neural signature of lifespan adversity in the adult brain. Nature Neuroscience, 26(9), 16031612. doi: 10.1038/s41593-023-01410-8CrossRefGoogle ScholarPubMed
Huang, J., Zhu, Q., Hao, X., Shi, X., Gao, S., Xu, X., & Zhang, D. (2019). Identifying resting-state multifrequency biomarkers via tree-guided group sparse learning for schizophrenia classification. IEEE Journal of Biomedical and Health Informatics, 23(1), 342350. doi: 10.1109/JBHI.2018.2796588CrossRefGoogle ScholarPubMed
Ikeda, S., Kawano, K., Watanabe, S., Yamashita, O., & Kawahara, Y. (2022). Predicting behavior through dynamic modes in resting-state fMRI data. NeuroImage, 247, 118801. doi: 10.1016/j.neuroimage.2021CrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825841. doi: 10.1016/s1053-8119(02)91132-8CrossRefGoogle ScholarPubMed
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782790. doi: 10.1016/j.neuroimage.2011.09.015CrossRefGoogle ScholarPubMed
Jones, D. T., Machulda, M. M., Vemuri, P., McDade, E. M., Zeng, G., Senjem, M. L., … Jack, C. R. (2011). Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77(16), 15241531. doi: 10.1212/WNL.0b013e318233b33dCrossRefGoogle ScholarPubMed
Kashyap, R., Bhattacharjee, S., Yeo, B. T., & Chen, S. A. (2019a). Maximizing dissimilarity in resting state detects heterogeneous subtypes in healthy population associated with high substance use and problems in antisocial personality. Human Brain Mapping, 41(5), 12611273. doi: 10.1002/hbm.24873CrossRefGoogle ScholarPubMed
Kashyap, R., Eng, G. K., Bhattacharjee, S., Gupta, B., Ho, R., Ho, C. S., … Chen, S. A. (2021). Individual-fMRI-approaches reveal cerebellum and visual communities to be functionally connected in obsessive compulsive disorder. Scientific Reports, 11(1), 115. doi: 10.1038/s41598-020-80346-6CrossRefGoogle ScholarPubMed
Kashyap, R., Kong, R., Bhattacharjee, S., Li, J., Zhou, J., & Yeo, B. T. (2019b). Individual-specific fMRI-subspaces improve functional connectivity prediction of behavior. NeuroImage, 189, 804812. doi: 10.1016/j.neuroimage.2019.01.069CrossRefGoogle ScholarPubMed
Kebets, V., Piguet, C., Chen, J., Ooi, L. Q. R., Kirschner, M., Siffredi, V., … Bernhardt, B. C. (2023). Multimodal neural correlates of childhood psychopathology. p. 2023.03.02.530821. bioRxiv. doi: 10.1101/2023.03.02.530821CrossRefGoogle Scholar
Kessels, R. P. C., van den Berg, E., Ruis, C., & Brands, A. M. A. (2008). The backward span of the corsi block-tapping task and its association with the WAIS-III digit span. Assessment, 15(4), 426434. doi: 10.1177/1073191108315611CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & Poulton, R. (2003). Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Archives of General Psychiatry, 60(7), 709717. doi: 10.1001/archpsyc.60.7.709CrossRefGoogle ScholarPubMed
Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., … Eickhoff, S. B. (2018). Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cerebral Cortex, 29(6), 25332551. doi: 10.1093/cercor/bhy123CrossRefGoogle Scholar
Krinner, L. M., Warren-Findlow, J., & Bowling, J. (2020). Examining the role of childhood adversity on excess alcohol intake and tobacco exposure among US college students. Substance Use & Misuse, 55(13), 20872098. doi: 10.1080/10826084.2020.1790009CrossRefGoogle ScholarPubMed
Kutz, J. N., Fu, X., & Brunton, S. L.. (2016). Multiresolution dynamic mode decomposition. SIAM Journal on Applied Dynamical Systems, 15(2), 713735.CrossRefGoogle Scholar
Lake, E. M., Finn, E. S., Noble, S. M., Vanderwal, T., Shen, X., Rosenberg, M. D., … Constable, R. T. (2019). The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 86(4), 315326. doi: 10.1016/j.biopsych.2019.02.019CrossRefGoogle ScholarPubMed
Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., … Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: The balloon analogue risk task (BART). Journal of Experimental Psychology. Applied, 8(2), 7584. doi: 10.1037//1076-898x.8.2.75CrossRefGoogle ScholarPubMed
Liu, X., Zhao, Y., Suo, X., Zhang, X., Pan, N., Kemp, G. J., … Wang, S. (2023). Psychological resilience mediates the protective role of default-mode network functional connectivity against COVID-19 vicarious traumatization. Translational Psychiatry, 13(1), 19. doi: 10.1038/s41398-023-02525-zCrossRefGoogle ScholarPubMed
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295327. doi: 10.1037/0033-295X.91.3.295CrossRefGoogle Scholar
Lui, C. K., Witbrodt, J., Li, L., Tam, C. C., Williams, E., Guo, Z., & Mulia, N. (2023). Associations between early childhood adversity and behavioral, substance use, and academic outcomes in childhood through adolescence in a U.S. Longitudinal cohort. Drug and Alcohol Dependence, 244, 109795. doi: 10.1016/j.drugalcdep.2023.109795CrossRefGoogle Scholar
Mattoni, M., Smith, D. V., & Olino, T. M. (2023). Characterizing heterogeneity in early adolescent reward networks and individualized associations with behavioral and clinical outcomes. Network Neuroscience, 7(2), 787810. doi: 10.1162/netn_a_00306CrossRefGoogle ScholarPubMed
McGrath, J. J., Al-Hamzawi, A., Alonso, J., Altwaijri, Y., Andrade, L. H., Bromet, E. J., … Zaslavsky, A. M. (2023). Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from 29 countries. The Lancet Psychiatry, 10(9), 668681. doi:10.1016/S2215-0366(23)00193-1CrossRefGoogle ScholarPubMed
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934. doi: 10.1016/j.copsyc.2016.10.004CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Peverill, M., Gold, A. L., Alves, S., & Sheridan, M. A. (2015). Child maltreatment and neural systems underlying emotion regulation. Journal of the American Academy of Child & Adolescent Psychiatry, 54(9), 753762. doi: 10.1016/j.jaac.2015.06.010CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Weissman, D., & Bitrán, D. (2019). Childhood adversity and neural development: A systematic review. Annual Review of Developmental Psychology, 1, 277312. doi: 10.1146/annurev-devpsych-121318-084950CrossRefGoogle ScholarPubMed
Mehta, U. M., Thirthalli, J., Naveen Kumar, C., Mahadevaiah, M., Rao, K., Subbakrishna, D. K., … Keshavan, M. S. (2011). Validation of social cognition rating tools in Indian setting (SOCRATIS): A new test-battery to assess social cognition. Asian Journal of Psychiatry, 4(3), 203209. doi: 10.1016/j.ajp.2011.05.014CrossRefGoogle ScholarPubMed
Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Sciences, 17(12), 627640. doi: 10.1016/j.tics.2013.09.015CrossRefGoogle ScholarPubMed
Meredith, R. M. (2015). Sensitive and critical periods during neurotypical and aberrant neurodevelopment: A framework for neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 50, 180188. doi: 10.1016/j.neubiorev.2014.12.001CrossRefGoogle ScholarPubMed
Milbocker, K. A., Campbell, T. S., Collins, N., Kim, S., Smith, I. F., Roth, T. L., & Klintsova, A. Y. (2021). Glia-driven brain circuit refinement is altered by early-life adversity: Behavioral outcomes. Frontiers in Behavioral Neuroscience, 15, 786234. doi: 10.3389/fnbeh.2021.786234CrossRefGoogle ScholarPubMed
Nair, A., Jolliffe, M., Lograsso, Y. S. S., & Bearden, C. E. (2020). A review of default mode network connectivity and its association with social cognition in adolescents with autism spectrum disorder and early-onset psychosis. Frontiers in Psychiatry, 11, 548922. doi: 10.3389/fpsyt.2020.00614CrossRefGoogle ScholarPubMed
Nelson, C. A., Bhutta, Z. A., Harris, N. B., Danese, A., & Samara, M. (2020). Adversity in childhood is linked to mental and physical health throughout life. BMJ, 371, m3048. doi: 10.1136/bmj.m3048CrossRefGoogle ScholarPubMed
Patel, P. K., Leathem, L. D., Currin, D. L., & Karlsgodt, K. H. (2021). Adolescent neurodevelopment and vulnerability to psychosis. Biological Psychiatry, 89(2), 184193. doi: 10.1016/j.biopsych.2020.06.028CrossRefGoogle ScholarPubMed
Piper, B. J., Li, V., Eiwaz, M. A., Kobel, Y. V., Benice, T. S., Chu, A. M., … Raber, J. (2012). Executive function on the psychology experiment building language tests. Behavior Research Methods, 44(1), 110123. doi: 10.3758/s13428-011-0096-6CrossRefGoogle ScholarPubMed
Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage, 112, 267277. doi: 10.1016/j.neuroimage.2015.02.064CrossRefGoogle ScholarPubMed
Qu, Y. L., Chen, J., Tam, A., Ooi, L. Q. R., Dhamala, E., Cocuzza, C., … Holmes, A. (2023). Distinct brain network features predict internalizing and externalizing traits in children and adults. bioRxiv, 2023–05. doi: 10.1101/2023.05.20.541490CrossRefGoogle Scholar
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38(1), 433447. doi: 10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Rakesh, D., & Whittle, S. (2021). Socioeconomic status and the developing brain–A systematic review of neuroimaging findings in youth. Neuroscience & Biobehavioral Reviews, 130, 379407. doi: 10.1016/j.neubiorev.2021.08.027CrossRefGoogle ScholarPubMed
Rebello, K., Moura, L. M., Pinaya, W. H., Rohde, L. A., & Sato, J. R. (2018). Default mode network maturation and environmental adversities during childhood. Chronic Stress, 2, 2470547018808295. doi: 10.1177/2470547018808295CrossRefGoogle ScholarPubMed
Rothbart, M. K. (2011). Becoming who we are: Temperament and personality in development. Guilford Press.Google Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., & Henningson, D. S. (2009). Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641, 115127. doi: 10.1017/S0022112009992059CrossRefGoogle Scholar
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 528. doi: 10.1017/S0022112010001217CrossRefGoogle Scholar
Sharma, E., Ravi, G. S., Kumar, K., Thennarasu, K., Heron, J., Hickman, M., … Mehta, U. M. (2023). Growth trajectories for executive and social cognitive abilities in an Indian population sample: Impact of demographic and psychosocial determinants. Asian Journal of Psychiatry, 82, 103475. doi: 10.1016/j.ajp.2023.103475CrossRefGoogle Scholar
Sharma, E., Vaidya, N., Iyengar, U., Zhang, Y., Holla, B., Purushottam, M., … Hickman, M. (2020). Consortium on vulnerability to externalizing disorders and addictions (cVEDA): A developmental cohort study protocol. BMC Psychiatry, 20(1), 114. doi: 10.1186/s12888-019-2373-3CrossRefGoogle Scholar
Shevlin, M., McElroy, E., & Murphy, J. (2017). Homotypic and heterotypic psychopathological continuity: A child cohort study. Social Psychiatry and Psychiatric Epidemiology, 52, 11351145. doi: 10.1007/s00127-017-1396-7CrossRefGoogle ScholarPubMed
Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences, 113(31), 88378842. doi: 10.1073/pnas.1600965113CrossRefGoogle ScholarPubMed
Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., … Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11), 15651567. doi: 10.1038/nn.4125CrossRefGoogle ScholarPubMed
Solmi, M., Radua, J., Olivola, M., Croce, E., Soardo, L., Salazar de Pablo, G., … Fusar-Poli, P. (2022). Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry, 27(1), 281295. doi: 10.1038/s41380-021-01161-7CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience & Biobehavioral Reviews, 31(7), 977986. doi: 10.1016/j.neubiorev.2007.02.005CrossRefGoogle ScholarPubMed
Sporns, O. (2013). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience, 15(3), 247. doi: 10.31887/DCNS.2013.15.3/ospornsCrossRefGoogle ScholarPubMed
Sripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, A., … Heitzeg, M. (2020). Prediction of neurocognition in youth from resting state fMRI. Molecular Psychiatry, 25(12), 34133421. doi: 10.1038/s41380-019-0481-6CrossRefGoogle ScholarPubMed
Tost, H., Champagne, F. A., & Meyer-Lindenberg, A. (2015). Environmental influence in the brain, human welfare and mental health. Nature Neuroscience, 18(10), 14211431. doi: 10.1038/nn.4108CrossRefGoogle ScholarPubMed
Tottenham, N. (2014). The importance of early experiences for neuro-affective development. Current Topics in Behavioral Neurosciences, 16, 109129. doi: 10.1007/7854_2013_254CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289. doi: 10.1006/nimg.2001.0978CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Margulies, D. S., Shehzad, Z., Shaw, D., … Milham, M. P. (2008). Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods, 169(1), 249254. doi: 10.1016/j.jneumeth.2007.11.031CrossRefGoogle ScholarPubMed
Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., … Menon, V. (2013). Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70(8), 869879. doi: 10.1001/jamapsychiatry.2013.104CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Davey, C. G., Mehta, U. M., Shah, J., Torous, J., Allen, N. B., … Wood, S. J. (2023). Towards a youth mental health paradigm: A perspective and roadmap. Molecular Psychiatry, 28(8), 31713181. doi: 10.1038/s41380-023-02202-zCrossRefGoogle ScholarPubMed
Vaidya, N., Holla, B., Heron, J., Sharma, E., Zhang, Y., Fernandes, G., … Das, S. (2023). Neurocognitive analysis of low-level arsenic exposure and executive function mediated by brain anomalies among children, adolescents, and young adults in India. JAMA Network Open, 6(5), e2312810e2312810. doi: 10.1001/jamanetworkopen.2023.12810CrossRefGoogle Scholar
Walhovd, K. B., Lövden, M., & Fjell, A. M. (2023). Timing of lifespan influences on brain and cognition. Trends in Cognitive Sciences, 29(s1), 774774. doi: 10.1016/j.tics.2023.07.001Google Scholar
Washington, S. D., & VanMeter, J. W. (2015). Anterior-posterior connectivity within the default mode network increases during maturation. International Journal of Medical and Biological Frontiers, 21(2), 207218, PMID: 26236149; PMCID: PMC4520706.Google ScholarPubMed
Whitesell, N. R., Beals, J., Mitchell, C. M., Manson, S. M., & Turner, R. J. (2009). Childhood exposure to adversity and risk of substance-use disorder in two American Indian populations: The meditational role of early substance-use initiation. Journal of Studies on Alcohol and Drugs, 70(6), 971981. doi: 10.15288/jsad.2009.70.971CrossRefGoogle ScholarPubMed
Whittle, S., Vijayakumar, N., Simmons, J. G., Dennison, M., Schwartz, O., Pantelis, C., … Allen, N. B. (2017). Role of positive parenting in the association between neighborhood social disadvantage and brain development across adolescence. JAMA Psychiatry, 74(8), 824832. doi: 10.1001/jamapsychiatry.2017.1558CrossRefGoogle ScholarPubMed
Yazgan, I., Hanson, J. L., Bates, J. E., Lansford, J. E., Pettit, G. S., & Dodge, K. A. (2021). Cumulative early childhood adversity and later antisocial behavior: The mediating role of passive avoidance. Development and Psychopathology, 33(1), 340350. doi: 10.1017/S0954579419001809CrossRefGoogle ScholarPubMed
Zeev-Wolf, M., Levy, J., Goldstein, A., Zagoory-Sharon, O., & Feldman, R. (2019). Chronic early stress impairs default mode network connectivity in preadolescents and their mothers. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(1), 7280. doi: 10.1016/j.bpsc.2018.09.009Google ScholarPubMed
Zhang, W., Hashemi, M. M., Kaldewaij, R., Koch, S. B. J., Beckmann, C., Klumpers, F., & Roelofs, K. (2019). Acute stress alters the ‘default’ brain processing. NeuroImage, 189, 870877. doi: 10.1016/j.neuroimage.2019.01.063CrossRefGoogle ScholarPubMed
Zhang, Y., Vaidya, N., Iyengar, U., Sharma, E., Holla, B., Ahuja, C. K., … Chakrabarti, A. (2020). The consortium on vulnerability to externalizing disorders and addictions (c-VEDA): An accelerated longitudinal cohort of children and adolescents in India. Molecular Psychiatry, 25(8), 16181630. doi: 10.1038/s41380-020-0656-1CrossRefGoogle Scholar
Zhu, T., Becquey, C., Chen, Y., Lejuez, C. W., Li, C.-S. R., & Bi, J. (2022). Identifying alcohol misuse biotypes from neural connectivity markers and concurrent genetic associations. Translational Psychiatry, 12(1), 253. doi: 10.1038/s41398-022-01983-1CrossRefGoogle ScholarPubMed
Supplementary material: File

Kashyap et al. supplementary material

Kashyap et al. supplementary material
Download Kashyap et al. supplementary material(File)
File 353.9 KB