Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:03:30.388Z Has data issue: false hasContentIssue false

Atypical hemispheric lateralization of brain function and structure in autism: a comprehensive meta-analysis study

Published online by Cambridge University Press:  17 February 2023

Qingqing Li
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
Wei Zhao
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
Lena Palaniyappan
Affiliation:
Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada Robarts Research Institute, Western University, London, Ontario, Canada
Shuixia Guo*
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, P. R. China
*
Author for correspondence: Shuixia Guo, E-mail: guoshuixia75@163.com

Abstract

Background

Characteristic changes in the asymmetric nature of the human brain are associated with neurodevelopmental differences related to autism. In people with autism, these differences are thought to affect brain structure and function, although the structural and functional bases of these defects are yet to be fully characterized.

Methods

We applied a comprehensive meta-analysis to resting-state functional and structural magnetic resonance imaging datasets from 370 people with autism and 498 non-autistic controls using seven datasets of the Autism Brain Imaging Data Exchange Project. We studied the meta-effect sizes based on standardized mean differences and standard deviations (s.d.) for lateralization of gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo). We examined the functional correlates of atypical laterality through an indirect annotation approach followed by a direct correlation analysis with symptom scores.

Results

In people with autism, 85, 51, and 51% of brain regions showed a significant diagnostic effect for lateralization in GMV, fALFF, and ReHo, respectively. Among these regions, 35.7% showed overlapping differences in lateralization in GMV, fALFF, and ReHo, particularly in regions with functional annotations for language, motor, and perceptual functions. These differences were associated with clinical measures of reciprocal social interaction, communication, and repetitive behaviors. A meta-analysis based on s.d. showed that people with autism had lower variability in structural lateralization but higher variability in functional lateralization.

Conclusion

These findings highlight that atypical hemispheric lateralization is a consistent feature in autism across different sites and may be used as a neurobiological marker for autism.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. K., Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., … Pickles, A. (2007). Patterns of growth in verbal abilities among children with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 75(4), 594604. https://doi.org/10.1037/0022-006X.75.4.594.CrossRefGoogle ScholarPubMed
Association, A. P. (2000). Diagnostic and statistical manual of mental disorders – (DSM-IV-TR) (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Choice Reviews Online, 33(4), 332412. https://doi.org/10.5860/choice.33-2412.Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.Google Scholar
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97111. https://doi.org/10.1002/jrsm.12.CrossRefGoogle ScholarPubMed
Brugger, S. P., & Howes, O. D. (2017). Heterogeneity and homogeneity of regional brain structure in schizophrenia: A meta-analysis. JAMA Psychiatry, 74(11), 11041111. https://doi.org/10.1001/jamapsychiatry.2017.2663.CrossRefGoogle ScholarPubMed
Cardinale, R. C., Shih, P., Fishman, I., Ford, L. M., & Müller, R. A. (2013). Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry, 70(9), 975982. https://doi.org/10.1001/jamapsychiatry.2013.382.CrossRefGoogle ScholarPubMed
Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. https://doi.org/10.3389/fnsys.2010.00013.Google ScholarPubMed
Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101129. https://doi.org/10.2307/3001666.CrossRefGoogle Scholar
Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659667. https://doi.org/10.1038/mp.2013.78.CrossRefGoogle ScholarPubMed
Disorders, D., Hospital, R. F., & Interview, A. D. (1994). Autism diagnostic interview-revised : A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders . Journal of autism and developmental disorders, 24(5), 659685. https://doi.org/10.1007/BF02172145.Google Scholar
Dougherty, C. C., Evans, D. W., Katuwal, G. J., & Michael, A. M. (2016). Asymmetry of fusiform structure in autism spectrum disorder: Trajectory and association with symptom severity. Molecular Autism, 7(1), 2828. https://doi.org/10.1186/s13229-016-0089-5.CrossRefGoogle ScholarPubMed
Duboc, V., Dufourcq, P., Blader, P., & Roussigné, M. (2015). Asymmetry of the brain: Development and implications. Annual Review of Genetics, 49(September), 647672. https://doi.org/10.1146/annurev-genet-112414-055322.CrossRefGoogle ScholarPubMed
Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., … Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. NeuroImage, 49(1), 4456. https://doi.org/10.1016/j.neuroimage.2009.08.024.CrossRefGoogle ScholarPubMed
Floris, D. L., Lai, M. C., Auer, T., Lombardo, M. V., Ecker, C., Chakrabarti, B., … Suckling, J. (2016). Atypically rightward cerebral asymmetry in male adults with autism stratifies individuals with and without language delay. Human Brain Mapping, 37(1), 230253. https://doi.org/10.1002/hbm.23023.CrossRefGoogle ScholarPubMed
Freeman, P. R., Hedges, L. V., & Olkin, I. (1986). Statistical methods for meta-analysis. Biometrics, 42(2), 189325. https://doi.org/10.2307/2531069.CrossRefGoogle Scholar
Gage, N. M., Juranek, J., Filipek, P. A., Osann, K., Flodman, P., Isenberg, A. L., … Spence, M. A. (2009). Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: An MRI investigation. Journal of Neurodevelopmental Disorders, 1(3), 205214. doi:10.1007/s11689-009-9010-2.CrossRefGoogle ScholarPubMed
Hawco, C., Yoganathan, L., Voineskos, A. N., Lyon, R., Tan, T., Daskalakis, Z. J., … Ameis, S. H. (2020). Greater individual variability in functional brain activity during working memory performance in young people with autism and executive function impairment. NeuroImage: Clinical, 27, 102260. https://doi.org/10.1016/J.NICL.2020.102260.CrossRefGoogle ScholarPubMed
He, N., Palaniyappan, L., Linli, Z., & Guo, S. (2022). Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: A meta-analysis of individual participant data. Brain Imaging and Behavior, 16(1), 5468. https://doi.org/10.1007/s11682-021-00476-x.CrossRefGoogle ScholarPubMed
Hier, D. B., LeMay, M., & Rosenberger, P. B. (1979). Autism and unfavorable left–right asymmetries of the brain. Journal of Autism and Developmental Disorders, 9(2), 153159. https://doi.org/10.1007/BF01531531.CrossRefGoogle ScholarPubMed
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 327557. https://doi.org/10.1136/bmj.327.7414.557.CrossRefGoogle ScholarPubMed
Hus, V., Pickles, A., Cook, E. H., Risi, S., & Lord, C. (2007). Using the autism diagnostic interview-revised to increase phenotypic homogeneity in genetic studies of autism. Biological Psychiatry, 61(4), 438448. https://doi.org/10.1016/j.biopsych.2006.08.044.CrossRefGoogle ScholarPubMed
Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Ohta, H., Kanai, C., … Hashimoto, R. I. (2015). Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Molecular Autism, 6(1), 114. https://doi.org/10.1186/s13229-015-0026-z.CrossRefGoogle ScholarPubMed
Kleinhans, N. M., Müller, R. A., Cohen, D. N., & Courchesne, E. (2008). Atypical functional lateralization of language in autism spectrum disorders. Brain Research, 1221, 115125. https://doi.org/10.1016/j.brainres.2008.04.080.CrossRefGoogle ScholarPubMed
Knaus, T. A., Tager-Flusberg, H., Mock, J., Dauterive, R., & Foundas, A. L. (2012). Prefrontal and occipital asymmetry and volume in boys with autism spectrum disorder. Cognitive and Behavioral Neurology, 25(4), 186194. https://doi.org/10.1097/WNN.0b013e318280e154.CrossRefGoogle ScholarPubMed
Kong, X. Z., Mathias, S. R., Guadalupe, T., Abé, C., Agartz, I., Akudjedu, T. N., … Orhan, F. (2018). Mapping cortical brain asymmetry in 17141 healthy individuals worldwide via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5154E5163. https://doi.org/10.1073/pnas.1718418115.Google Scholar
Kosaka, H., Omori, M., Munesue, T., Ishitobi, M., Matsumura, Y., Takahashi, T., … Wada, Y. (2010). Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage, 50(4), 13571363. https://doi.org/10.1016/j.neuroimage.2010.01.085.CrossRefGoogle ScholarPubMed
Lai, M. C., Lombardo, M. V., Suckling, J., Ruigrok, A. N. V., Chakrabarti, B., Ecker, C., … Baron-Cohen, S. (2013). Biological sex affects the neurobiology of autism. Brain, 136(9), 27992815. https://doi.org/10.1093/brain/awt216.CrossRefGoogle ScholarPubMed
Lindell, A. (2017). Atypical hemispheric asymmetries in autism spectrum disorders. In F. Casanova, Manuel, El-Baz, Ayman, & S. Suri, Jasjit (Eds.), Autism imaging and devices (1st ed., pp. 135155). Boca Raton: CRC Press. https://doi.org/10.1201/9781315371375.Google Scholar
Liu, Z., Rolls, E. T., Liu, Z., Zhang, K., Yang, M., Du, J., … Feng, J. (2019). Brain Annotation Toolbox: Exploring the functional and genetic associations of neuroimaging results. Bioinformatics (Oxford, England), 35(19), 37713778. https://doi.org/10.1093/bioinformatics/btz128.Google ScholarPubMed
Lombardo, M. V., Lai, M. C., & Baron-Cohen, S. (2019). Big data approaches to decomposing heterogeneity across the autism spectrum. Molecular Psychiatry, 24(10), 14351450. https://doi.org/10.1038/s41380-018-0321-0.CrossRefGoogle ScholarPubMed
Mesulam, M. M., Rader, B. M., Sridhar, J., Nelson, M. J., Hyun, J., Rademaker, A., … Rogalski, E. J. (2019). Word comprehension in temporal cortex and Wernicke area: A PPA perspective. Neurology, 92(3), e224e233. https://doi.org/10.1212/WNL.0000000000006788.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., & Crow, T. J. (2005). Right hemisphere language functions and schizophrenia: The forgotten hemisphere? Brain, 128(5), 963978. https://doi.org/10.1093/brain/awh466.CrossRefGoogle ScholarPubMed
Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage, 154, 169173. https://doi.org/10.1016/j.neuroimage.2016.11.052.CrossRefGoogle ScholarPubMed
Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591605. https://doi.org/10.1111/j.1469-185X.2007.00027.x.CrossRefGoogle ScholarPubMed
Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods in Ecology and Evolution, 6(2), 143152. https://doi.org/10.1111/2041-210X.12309.CrossRefGoogle Scholar
Okada, N., Fukunaga, M., Yamashita, F., Koshiyama, D., Yamamori, H., Ohi, K., … Hashimoto, R. (2016). Abnormal asymmetries in subcortical brain volume in schizophrenia. Molecular Psychiatry, 21(10), 14601466. https://doi.org/10.1038/mp.2015.209.CrossRefGoogle ScholarPubMed
Paakki, J. J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., … Kiviniemi, V.. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Research, 1321, 169179. doi:10.1016/j.brainres.2009.12.081.CrossRefGoogle ScholarPubMed
Palaniyappan, L., Sabesan, P., Li, X., & Luo, Q. (2021). Schizophrenia increases variability of the central antioxidant system: A meta-analysis of variance from MRS studies of glutathione. Frontiers in Psychiatry, 12, pp. 796466. https://doi.org/10.3389/fpsyt.2021.796466.CrossRefGoogle ScholarPubMed
Plessen, K. J., Hugdahl, K., Bansal, R., Hao, X., & Peterson, B. S. (2014). Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. Journal of Neuroscience, 34(18), 62946302. https://doi.org/10.1523/JNEUROSCI.3692-13.2014.CrossRefGoogle ScholarPubMed
Połczyńska, M. M., Beck, L., Kuhn, T., Benjamin, C. F., Ly, T. K., Japardi, K., … Bookheimer, S. Y. (2021). Tumor location and reduction in functional MRI estimates of language laterality. Journal of Neurosurgery, 2021 Apr 2, 111. https://doi.org/10.3171/2020.9.jns202036.Google Scholar
Postema, M. C., van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., … Francks, C. (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 10(1), 112. https://doi.org/10.1038/s41467-019-13005-8.CrossRefGoogle Scholar
Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105, 536551. https://doi.org/10.1016/j.neuroimage.2014.10.044.CrossRefGoogle ScholarPubMed
Prior, M. R., Tress, B., Hoffman, W. L., & Boldt, D. (1984). Computed tomographic study of children with classic autism. Archives of Neurology, 41(5), 482484. https://doi.org/10.1001/archneur.1984.04050170028010.CrossRefGoogle ScholarPubMed
Rojas, D. C., Camou, S. L., Reite, M. L., & Rogers, S. J. (2005). Planum temporale volume in children and adolescents with autism. Journal of Autism and Developmental Disorders, 35(4), 479486. https://doi.org/10.1007/s10803-005-5038-7.CrossRefGoogle ScholarPubMed
Rolison, M., Lacadie, C., Chawarska, K., Spann, M., & Scheinost, D. (2022). Atypical intrinsic hemispheric interaction associated with autism spectrum disorder is present within the first year of life. Cerebral Cortex, 32(6), 12121222. https://doi.org/10.1093/cercor/bhab284.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2014). Emotion and decision-making explained: A précis. Cortex, 59, 185193. https://doi.org/10.1016/j.cortex.2014.01.020.CrossRefGoogle ScholarPubMed
Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage, 122, 15. https://doi.org/10.1016/j.neuroimage.2015.07.075.CrossRefGoogle ScholarPubMed
Sarmiento, C., & Lau, C. (2020). Diagnostic and statistical manual of mental disorders, 5th Ed.: DSM-5. In J. Carducci, Bernardo, S. Nave, Christopher, Di Fabio, Annamaria, H. Saklofske, Donald, & Stough, Con (Eds.), The Wiley encyclopedia of personality and individual differences (pp. 125129). America: John Wiley & Sons Ltd. https://doi.org/10.1002/9781119547174.ch198.Google Scholar
Sha, Z., van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., … Francks, C. (2022). Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 27, 21142125. https://doi.org/10.1038/s41380-022-01452-7.CrossRefGoogle ScholarPubMed
Shaw, P., Lalonde, F., Lepage, C., Rabin, C., Eckstrand, K., Sharp, W., … Rapoport, J. (2009). Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 66(8), 888896. https://doi.org/10.1001/archgenpsychiatry.2009.103.CrossRefGoogle ScholarPubMed
Solomon, M., Ozonoff, S., Carter, C., & Caplan, R. (2008). Formal thought disorder and the autism spectrum: Relationship with symptoms, executive control, and anxiety. Journal of Autism and Developmental Disorders, 38(8), 14741484. https://doi.org/10.1007/s10803-007-0526-6.CrossRefGoogle ScholarPubMed
Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews Neuroscience, 4(1), 3748. https://doi.org/10.1038/nrn1009.CrossRefGoogle ScholarPubMed
Tsai, L., Jacoby, C. G., Stewart, M. A., & Beisler, J. M. (1982). Unfavourable left–right asymmetries of the brain and autism: A question of methodology. British Journal of Psychiatry, 140(3), 312319. https://doi.org/10.1192/bjp.140.3.312.CrossRefGoogle ScholarPubMed
Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., … Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology and Evolution, 27(4), 244252. https://doi.org/10.1016/j.tree.2011.11.014.CrossRefGoogle ScholarPubMed
Weisbrot, D. M., Gadow, K. D., DeVincent, C. J., & Pomeroy, J. (2005). The presentation of anxiety in children with pervasive developmental disorders. Journal of Child and Adolescent Psychopharmacology, 15(3), 477496. https://doi.org/10.1089/cap.2005.15.477.CrossRefGoogle ScholarPubMed
WHO (1992). International statistical classification of diseases and related health problems 10th revision (ICD-10)-WHO version for 2016. Geneva: World Health Organization.Google Scholar
Wyciszkiewicz, A., & Pawlak, M. A. (2014). Basal ganglia volumes: MR-derived reference ranges and lateralization indices for children and young adults. Neuroradiology Journal, 27(5), 595612. https://doi.org/10.15274/NRJ-2014-10073.CrossRefGoogle ScholarPubMed
Young, J. S., Lee, A. T., & Chang, E. F. (2021). A review of cortical and subcortical stimulation mapping for language. Neurosurgery, 89(3), 331342. https://doi.org/10.1093/neuros/nyaa436.CrossRefGoogle ScholarPubMed
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material

Download Li et al. supplementary material(File)
File 185.7 KB