Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T05:24:27.747Z Has data issue: false hasContentIssue false

Accelerated cortical thinning and volume reduction over time in young people at high genetic risk for bipolar disorder

Published online by Cambridge University Press:  07 September 2020

G. Roberts
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
R. Lenroot
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Neuroscience Research Australia, Sydney, NSW, Australia School of Medicine, University of New Mexico, Albuquerque, New Mexico
B. Overs
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia
J. Fullerton
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
V. Leung
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
K. Ridgway
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
A. Stuart
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
A. Frankland
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
F. Levy
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Prince of Wales Hospital, Randwick, NSW, Australia
D. Hadzi-Pavlovic
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
M. Breakspear
Affiliation:
School of psychology, University of Newcastle, Callaghan, NSW, Australia
P. B. Mitchell*
Affiliation:
School of Psychiatry, University of New South Wales, Randwick, NSW, Australia Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia Prince of Wales Hospital, Randwick, NSW, Australia
*
Author for correspondence: P. B. Mitchell, E-mail: phil.mitchell@unsw.edu.au

Abstract

Background

Bipolar disorder (BD) is a familial psychiatric disorder associated with frontotemporal and subcortical brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about structural brain trajectories in those at risk.

Method

Neuroimaging was conducted at baseline and at 2-year follow-up interval in 90 high-risk individuals with a first-degree BD relative (HR), and 56 participants with no family history of mental illness who could have non-BD diagnoses. All 146 subjects were aged 12–30 years at baseline. We examined longitudinal change in gray and white matter volume, cortical thickness, and surface area in the frontotemporal cortex and subcortical regions.

Results

Compared to controls, HR participants showed accelerated cortical thinning and volume reduction in right lateralised frontal regions, including the inferior frontal gyrus, lateral orbitofrontal cortex, frontal pole and rostral middle frontal gyrus. Independent of time, the HR group had greater cortical thickness in the left caudal anterior cingulate cortex, larger volume in the right medial orbitofrontal cortex and greater area of right accumbens, compared to controls. This pattern was evident even in those without the new onset of psychopathology during the inter-scan interval.

Conclusions

This study suggests that differences previously observed in BD are developing prior to the onset of the disorder. The pattern of pathological acceleration of cortical thinning is likely consistent with a disturbance of molecular mechanisms responsible for normal cortical thinning. We also demonstrate that neuroanatomical differences in HR individuals may be progressive in some regions and stable in others.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abé, C., Liberg, B., Song, J., Bergen, S. E., Petrovic, P., Ekman, C. J., … Landén, M. (2020). Longitudinal cortical thickness changes in bipolar disorder and the relationship to genetic risk, mania, and lithium use. Biological Psychiatry, 87(3), 271281.CrossRefGoogle ScholarPubMed
Adler, C. M., Levine, A. D., DelBello, M. P., & Strakowski, S. M. (2005). Changes in gray matter volume in patients with bipolar disorder. Biological Psychiatry, 58(2), 151157. doi: 10.1016/j.biopsych.2005.03.022.CrossRefGoogle ScholarPubMed
Alves, N. T., Fukusima, S. S., & Aznar-Casanova, J. A. (2008). Models of brain asymmetry in emotional processing. Psychology & Neuroscience, 1(1), 63.Google Scholar
Ashburner, J., Csernansk, J. G., Davatzikos, C., Fox, N. C., Frisoni, G. B., & Thompson, P. M. (2003). Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurology, 2(2), 7988.CrossRefGoogle ScholarPubMed
Bauer, I. E., Sanches, M., Suchting, R., Green, C. E., El Fangary, N. M., Zunta-Soares, G. B., & Soares, J. C. (2014). Amygdala enlargement in unaffected offspring of bipolar parents. Journal of Psychiatric Research, 59, 200205.CrossRefGoogle ScholarPubMed
Bellivier, F., Etain, B., Malafosse, A., Henry, C., Kahn, J.-P., Elgrabli-Wajsbrot, O., … Scott, J. (2014). Age at onset in bipolar I affective disorder in the USA and Europe. World Journal of Biological Psychiatry, 15(5), 369376.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 6083.CrossRefGoogle Scholar
Birmaher, B., Axelson, D., Monk, K., Kalas, C., Goldstein, B., Hickey, M. B., … Brent, D. (2009). Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder: The Pittsburgh Bipolar Offspring study. Archives of General Psychiatry, 66(3), 287296.CrossRefGoogle ScholarPubMed
Boccardi, M., Almici, M., Bresciani, L., Caroli, A., Bonetti, M., Monchieri, S., … Frisoni, G. B. (2010). Clinical and medial temporal features in a family with mood disorders. Neuroscience Letters, 468(2), 9397. doi: 10.1016/j.neulet.2009.10.067.CrossRefGoogle Scholar
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980.CrossRefGoogle ScholarPubMed
Drobinin, V., Slaney, C., Garnham, J., Propper, L., Uher, R., Alda, M., & Hajek, T. (2019). Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders. Psychological Medicine, 49(8), 13081315.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593.CrossRefGoogle ScholarPubMed
Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (Vol. 1). Oxford: Oxford University Press.Google Scholar
Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., … McMahon, M. A. B. (2020). The genetic architecture of the human cerebral cortex. Science (New York, N.Y.), 20(367), 6484.Google Scholar
Hajek, T., Alda, M., Hajek, E., & Ivanoff, J. (2013). Functional neuroanatomy of response inhibition in bipolar disorders – combined voxel based and cognitive performance meta-analysis. Journal of Psychiatric Research, 47(12), 19551966.CrossRefGoogle ScholarPubMed
Hajek, T., Cullis, J., Novak, T., Kopecek, M., Blagdon, R., Propper, L., … Alda, M. (2013). Brain structural signature of familial predisposition for bipolar disorder: Replicable evidence for involvement of the right inferior frontal gyrus. Biological Psychiatry, 73(2), 144152.CrossRefGoogle ScholarPubMed
Hajek, T., Gunde, E., Slaney, C., Propper, L., MacQueen, G., Duffy, A., & Alda, M. (2009). Striatal volumes in affected and unaffected relatives of bipolar patients–high-risk study. Journal of Psychiatric Research, 43(7), 724729.CrossRefGoogle ScholarPubMed
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage, 50(3), 13131319.CrossRefGoogle ScholarPubMed
Hibar, D., Westlye, L., Doan, N., Jahanshad, N., Cheung, J., Ching, C., … Mwangi, B. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Molecular Psychiatry, 23(4), 932942. doi: 10.1038/mp.2017.73.CrossRefGoogle ScholarPubMed
Hulshoff Pol, H. E., van Baal, G. C., Schnack, H. G., Brans, R. G., van der Schot, A. C., Brouwer, R. M., … Kahn, R. S. (2012). Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder. Archives of General Psychiatry, 69(4), 349359. doi: 10.1001/archgenpsychiatry.2011.1615.Google ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980988.CrossRefGoogle ScholarPubMed
Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Ustun, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4), 359364. doi: 10.1097/YCO.0b013e32816ebc8c.CrossRefGoogle ScholarPubMed
Kovacs, M. (1992). Children's depression inventory (CDI). New York: Multi-Health Systems.Google Scholar
Ladouceur, C. D., Diwadkar, V. A., White, R., Bass, J., Birmaher, B., Axelson, D. A., & Phillips, M. L. (2013). Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Developmental Cognitive Neuroscience, 5, 185196.CrossRefGoogle ScholarPubMed
Leckman, J. F., Sholomskas, D., Thompson, W. D., Belanger, A., & Weissman, M. M. (1982). Best estimate of lifetime psychiatric diagnosis: A methodological study. Archives of General Psychiatry, 39(8), 879883.CrossRefGoogle ScholarPubMed
Lim, C. S., Baldessarini, R. J., Vieta, E., Yucel, M., Bora, E., & Sim, K. (2013). Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: Review of the evidence. Neuroscience and Biobehavioral Reviews, 37(3), 418435. doi: 10.1016/j.neubiorev.2013.01.003.CrossRefGoogle Scholar
Macoveanu, J., Baaré, W., Madsen, K. H., Kessing, L. V., Siebner, H. R., & Vinberg, M. (2018). Risk for affective disorders is associated with greater prefrontal gray matter volumes: A prospective longitudinal study. NeuroImage: Clinical, 17, 786793. doi: 10.1016/j.nicl.2017.12.011.CrossRefGoogle ScholarPubMed
Matsuo, K., Kopecek, M., Nicoletti, M., Hatch, J., Watanabe, Y., Nery, F., … Soares, J. (2012). New structural brain imaging endophenotype in bipolar disorder. Molecular Psychiatry, 17(4), 412420. doi: 10.1038/mp.2011.3.CrossRefGoogle ScholarPubMed
Maxwell, M. E. (1992). Manual for the FIGS. Maryland: Clinical Neurogenetics Branch, National Institute of Mental Health.Google Scholar
McIntosh, A. M., Job, D. E., Moorhead, T. W. J., Harrison, L. K., Lawrie, S. M., & Johnstone, E. C. (2005). White matter density in patients with schizophrenia, bipolar disorder and their unaffected relatives. Biological Psychiatry, 58(3), 254257. doi: 10.1016/j.biopsych.2005.03.044.CrossRefGoogle ScholarPubMed
Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Sowell, E. R. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage, 141, 273281. doi: 10.1016/j.neuroimage.2016.07.044.CrossRefGoogle ScholarPubMed
Montgomery, S. A., & Åsberg, M. (1979). A new depression scale designed to be sensitive to change. The British journal of psychiatry, 134(4), 382389.CrossRefGoogle ScholarPubMed
Nery, F. G., Monkul, E. S., & Lafer, B. (2013). Gray matter abnormalities as brain structural vulnerability factors for bipolar disorder: A review of neuroimaging studies of individuals at high genetic risk for bipolar disorder. Australian and New Zealand Journal of Psychiatry, 47(12), 11241135. doi: 10.1177/0004867413496482.CrossRefGoogle ScholarPubMed
Nickson, T., Chan, S., Papmeyer, M., Romaniuk, L., Macdonald, A., Stewart, T., … Sussmann, J. (2016). Prospective longitudinal voxel-based morphometry study of major depressive disorder in young individuals at high familial risk. Psychological Medicine, 46(11), 23512361. doi: 10.1017/S0033291716000519.CrossRefGoogle ScholarPubMed
Nurnberger, J. I., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., … Reich, T. (1994). Diagnostic interview for genetic studies: Rationale, unique features, and training. Archives of General Psychiatry, 51(11), 849859.CrossRefGoogle ScholarPubMed
Nurnberger, J. I., McInnis, M., Reich, W., Kastelic, E., Wilcox, H. C., Glowinski, A., … Gershon, E. S. (2011). A high-risk study of bipolar disorder: Childhood clinical phenotypes as precursors of major mood disorders. Archives of General Psychiatry, 68(10), 10121020. doi: 10.1001/archgenpsychiatry.2011.126.CrossRefGoogle ScholarPubMed
Özerdem, A., Ceylan, D., & Can, G. (2016). Neurobiology of risk for bipolar disorder. Current Treatment Options in Psychiatry, 3(4), 315329.CrossRefGoogle ScholarPubMed
Papmeyer, M., Giles, S., Sussmann, J. E., Kielty, S., Stewart, T., Lawrie, S. M., … McIntosh, A. M. (2015). Cortical thickness in individuals at high familial risk of mood disorders as they develop major depressive disorder. Biological Psychiatry, 78(1), 5866. doi: 10.1016/j.biopsych.2014.10.018.CrossRefGoogle ScholarPubMed
Papmeyer, M., Sussmann, J. E., Stewart, T., Giles, S., Centola, J. G., Zannias, V., … McIntosh, A. M. (2016). Prospective longitudinal study of subcortical brain volumes in individuals at high familial risk of mood disorders with or without subsequent onset of depression. Psychiatry Research: Neuroimaging, 248, 119125. doi: 10.1016/j.pscychresns.2015.12.009.CrossRefGoogle ScholarPubMed
Parker, N., Patel, Y., Jackowski, A. P., Pan, P. M., Salum, G. A., Pausova, Z., & Paus, T. J. (2020). Assessment of neurobiological mechanisms of cortical thinning during childhood and adolescence and their implications for psychiatric disorders. JAMA Psychiatry. Online ahead of print. doi: 10.1001/jamapsychiatry.2020.1495.CrossRefGoogle ScholarPubMed
Roberts, G., Green, M. J., Breakspear, M., McCormack, C., Frankland, A., Wright, A., … Mitchell, P. B. (2013). Reduced inferior frontal gyrus activation during response inhibition to emotional stimuli in youth at high risk of bipolar disorder. Biological Psychiatry, 74(1), 5561.CrossRefGoogle ScholarPubMed
Roberts, G., Lenroot, R., Frankland, A., Yeung, P., Gale, N., Wright, A., … Mitchell, P. (2016). Abnormalities in left inferior frontal gyral thickness and parahippocampal gyral volume in young people at high genetic risk for bipolar disorder. Psychological Medicine, 46(10), 20832096. doi: 10.1017/S0033291716000507.CrossRefGoogle ScholarPubMed
Roberts, G., Lord, A., Frankland, A., Wright, A., Lau, P., Levy, F., … Breakspear, M. (2017). Functional dysconnection of the inferior frontal gyrus in young people with bipolar disorder or at genetic high risk. Biological Psychiatry, 81(8), 718727.CrossRefGoogle ScholarPubMed
Roberts, G., Perry, A., Lord, A., Frankland, A., Leung, V., Holmes-Preston, E., … Breakspear, M. (2018). Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Molecular Psychiatry, 23, 413421.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 1129.CrossRefGoogle ScholarPubMed
Saricicek, A., Yalin, N., Hidiroglu, C., Cavusoglu, B., Tas, C., Ceylan, D., … Ozerdem, A. (2015). Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives. Journal of Affective Disorders, 186, 110118. doi: 10.1016/j.jad.2015.06.055.CrossRefGoogle ScholarPubMed
Surguladze, S. A., Marshall, N., Schulze, K., Hall, M.-H., Walshe, M., Bramon, E., … McDonald, C. (2010). Exaggerated neural response to emotional faces in patients with bipolar disorder and their first-degree relatives. Neuroimage, 53(1), 5864.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J., Dahl, R. E., … Crone, E. A. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. Journal of Neuroscience, 37(12), 34023412. doi: 10.1523/JNEUROSCI.3302-16.2017.CrossRefGoogle ScholarPubMed
Townsend, J., & Altshuler, L. L. (2012). Emotion processing and regulation in bipolar disorder: A review. Bipolar Disorders, 14(4), 326339. doi: 10.1111/j.1399-5618.2012.01021.x.CrossRefGoogle ScholarPubMed
van Erp, T. G., Thompson, P. M., Kieseppä, T., Bearden, C. E., Marino, A. C., Hoftman, G. D., … Kaprio, J. (2012). Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Human Brain Mapping, 33(3), 501510. doi: 10.1002/hbm.21239.CrossRefGoogle ScholarPubMed
Walterfang, M., Wood, A. G., Barton, S., Velakoulis, D., Chen, J., Reutens, D. C., … Frangou, S. (2009). Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(6), 10501057. doi: 10.1016/j.pnpbp.2009.05.019.CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. New York: The Psychological Corporation.Google Scholar
Yap, Q. J., Teh, I., Fusar-Poli, P., Sum, M. Y., Kuswanto, C., & Sim, K. (2013). Tracking cerebral white matter changes across the lifespan: Insights from diffusion tensor imaging studies. Journal of Neural Transmission, 120(9), 13691395. doi: 10.1007/s00702-013-0971-7.CrossRefGoogle ScholarPubMed
Young, R., Biggs, J., Ziegler, V., & Meyer, D. (1978). A rating scale for mania: Reliability, validity and sensitivity. The British Journal of Psychiatry, 133(5), 429435.CrossRefGoogle ScholarPubMed
Supplementary material: File

Roberts et al. supplementary material

Roberts et al. supplementary material

Download Roberts et al. supplementary material(File)
File 6.6 MB