Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j4fss Total loading time: 0.494 Render date: 2022-10-01T21:21:27.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders

Published online by Cambridge University Press:  10 July 2020

Guanmao Chen
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Pan Chen
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
JiaYing Gong
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
Yanbin Jia
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Shuming Zhong
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Feng Chen
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Jurong Wang*
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Zhenye Luo
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Zhangzhang Qi
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Li Huang
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Ying Wang*
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
*
Author for correspondence: Ying Wang, E-mail: johneil@vip.sina.com
Author for correspondence: Ying Wang, E-mail: johneil@vip.sina.com

Abstract

Background

Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD.

Methods

Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed.

Results

Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs.

Conclusions

The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Abe, C., Ekman, C. J., Sellgren, C., Petrovic, P., Ingvar, M., & Landen, M. (2016). Cortical thickness, volume and surface area in patients with bipolar disorder types I and II. Journal of Psychiatry & Neuroscience, 41, 240250. doi:10.1503/jpn.150093CrossRefGoogle ScholarPubMed
Adler, C. M., Levine, A. D., DelBello, M. P., & Strakowski, S. M. (2005). Changes in gray matter volume in patients with bipolar disorder. Biological Psychiatry, 58, 151157. doi:10.1016/j.biopsych.2005.03.022CrossRefGoogle ScholarPubMed
Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends In Neurosciences, 13, 266271. doi:10.1016/0166-2236(90)90107-l.CrossRefGoogle ScholarPubMed
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24, 663676. doi:10.1093/cercor/bhs352CrossRefGoogle ScholarPubMed
Azorin, J. M., Kaladjian, A., Besnier, N., Adida, M., Hantouche, E., Lancrenon, S., & Akiskal, H. (2010). Suicidal behaviour in a French cohort of major depressive patients: Characteristics of attempters and nonattempters. Journal of Affective Disorders, 123, 8794. doi:10.1016/j.jad.2009.09.004CrossRefGoogle Scholar
Bracht, T., Federspiel, A., Schnell, S., Horn, H., Hofle, O., Wiest, R., … Walther, S. (2012). Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder. Plos One, 7, e52238. doi:10.1371/journal.pone.0052238CrossRefGoogle ScholarPubMed
Caseras, X., Murphy, K., Lawrence, N. S., Fuentes-Claramonte, P., Watts, J., Jones, D. K., & Phillips, M. L. (2015). Emotion regulation deficits in euthymic bipolar I versus bipolar II disorder: A functional and diffusion-tensor imaging study. Bipolar Disorders, 17, 461470. doi:10.1111/bdi.12292CrossRefGoogle ScholarPubMed
Cheng, Y. Q., Xu, J., Chai, P., Li, H. J., Luo, C. R., Yang, T., … Xu, L. (2010). Brain volume alteration and the correlations with the clinical characteristics in drug-naive first-episode MDD patients: A voxel-based morphometry study. Neuroscience Letters, 480, 3034. doi:10.1016/j.neulet.2010.05.075CrossRefGoogle ScholarPubMed
Cordova-Palomera, A., Kaufmann, T., Persson, K., Alnaes, D., Doan, N. T., Moberget, T., … Westlye, L. T. (2017). Disrupted global metastability and static and dynamic brain connectivity across individuals in the alzheimer's disease continuum. Scientific Reports, 7, 40268. doi:10.1038/srep40268CrossRefGoogle ScholarPubMed
Dell'Osso, B., Cinnante, C., Di Giorgio, A., Cremaschi, L., Palazzo, M. C., Cristoffanini, M., … Altamura, A. C. (2015). Altered prefrontal cortex activity during working memory task in Bipolar Disorder: A functional Magnetic Resonance Imaging study in euthymic bipolar I and II patients. Journal of Affective Disorders, 184, 116122. doi:10.1016/j.jad.2015.05.026CrossRefGoogle ScholarPubMed
Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science (New York, N.Y.), 324, 811813. doi:10.1126/science.1169896CrossRefGoogle ScholarPubMed
Desmurget, M., & Sirigu, A. (2012). Conscious motor intention emerges in the inferior parietal lobule. Current Opinion in Neurobiology,, 22, 10041011. doi:10.1016/j.conb.2012.06.006.CrossRefGoogle ScholarPubMed
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X. N., Mennes, M., Mairena, M. A., … Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69, 847856. doi:10.1016/j.biopsych.2010.10.029CrossRefGoogle ScholarPubMed
Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., … Milham, M. P. (2008). Functional connectivity of human striatum: A resting state FMRI study. Cerebral Cortex, 18, 27352747. doi:10.1093/cercor/bhn041CrossRefGoogle ScholarPubMed
Dong, D., Duan, M., Wang, Y., Zhang, X., Jia, X., Li, Y., … Luo, C. (2018). Reconfiguration of dynamic functional connectivity in sensory and perceptual system in schizophrenia. Cerebral Cortex, 29, 35773589. doi:10.1093/cercor/bhy232CrossRefGoogle Scholar
Doucet, G. E., Bassett, D. S., Yao, N. L., Glahn, D. C., & Frangou, S. (2017). The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. American Journal of Psychiatry, 174, 12141222. doi:10.1176/appi.ajp.2017.17010095CrossRefGoogle ScholarPubMed
Exner, C. (2002). The differential role of premotor frontal cortex and Basal Ganglia in motor sequence learning: Evidence from focal Basal Ganglia lesions. Learning & Memory, 9, 376386. doi:10.1101/lm.48402CrossRefGoogle ScholarPubMed
Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21, 13581365. doi:10.1038/mp.2015.168CrossRefGoogle ScholarPubMed
Fornito, A., Harrison, B. J., Goodby, E., Dean, A., Ooi, C., Nathan, P. J., … Bullmore, E. T. (2013). Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. Jama Psychiatry, 70, 11431151. doi:10.1001/jamapsychiatry.2013.1976CrossRefGoogle Scholar
Frazier, J. A., Breeze, J. L., Papadimitriou, G., Kennedy, D. N., Hodge, S. M., Moore, C. M., … Makris, N. (2007). White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disorders, 9, 799809. doi:10.1111/j.1399-5618.2007.00482.xCrossRefGoogle ScholarPubMed
Fung, G., Deng, Y., Zhao, Q., Li, Z., Qu, M., Li, K., … Chan, R. C. (2015). Distinguishing bipolar and major depressive disorders by brain structural morphometry: A pilot study. BMC Psychiatry, 15, 298. doi:10.1186/s12888-015-0685-5CrossRefGoogle ScholarPubMed
Furman, D. J., Hamilton, J. P., & Gotlib, I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biology of Mood & Anxiety Disorders, 1, 11. doi:10.1186/2045-5380-1-11CrossRefGoogle ScholarPubMed
Gabbay, V., Ely, B. A., Li, Q., Bangaru, S. D., Panzer, A. M., Alonso, C. M., … Milham, M. P. (2013). Striatum-based circuitry of adolescent depression and anhedonia. Journal of The American Academy of Child And Adolescent Psychiatry, 52, 628641 e613. doi:10.1016/j.jaac.2013.04.003.CrossRefGoogle ScholarPubMed
Gonda, X., Pompili, M., Serafini, G., Montebovi, F., Campi, S., Dome, P., … Rihmer, Z. (2012). Suicidal behavior in bipolar disorder: Epidemiology, characteristics and major risk factors. Journal of Affective Disorders, 143, 1626. doi:10.1016/j.jad.2012.04.041CrossRefGoogle ScholarPubMed
Guo, Z., Liu, X., Xu, S., Hou, H., Chen, X., Zhang, Z., & Chen, W. (2018). Abnormal changes in functional connectivity between the amygdala and frontal regions are associated with depression in Alzheimer's disease. Neuroradiology, 60, 13151322. doi:10.1007/s00234-018-2100-7CrossRefGoogle ScholarPubMed
Haber, S. N., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. The Journal of neuroscience : the Official Journal of the Society for Neuroscience, 15, 48514867. doi:10.1523/JNEUROSCI.15-07-04851.1995CrossRefGoogle ScholarPubMed
Han, S., He, Z., Duan, X., Tang, Q., Chen, Y., Yang, Y., … Chen, H. (2018). Dysfunctional connectivity between raphe nucleus and subcortical regions presented opposite differences in bipolar disorder and major depressive disorder. Progress in Neuro-psychopharmacology & Biological Psychiatry, 92, 7682. doi:10.1016/j.pnpbp.2018.12.017CrossRefGoogle ScholarPubMed
He, Z., Sheng, W., Lu, F., Long, Z., Han, S., Pang, Y., … Chen, H. (2019). Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 90, 177185. doi:10.1016/j.pnpbp.2018.11.009CrossRefGoogle ScholarPubMed
Hu, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. Jama Psychiatry, 72, 584592. doi:10.1001/jamapsychiatry.2015.1CrossRefGoogle ScholarPubMed
Hugdahl, K., Specht, K., Biringer, E., Weis, S., Elliott, R., Hammar, A., … Lund, A. (2007). Increased parietal and frontal activation after remission from recurrent major depression: A repeated fMRI study. Cognitive Therapy and Research, 31, 147160. doi:10.1007/s10608-006-9116-8CrossRefGoogle Scholar
Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., & Menon, R. S. (2013). Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human Brain Mapping, 34, 21542177. doi:10.1002/hbm.22058CrossRefGoogle ScholarPubMed
Jiang, X., Dai, X., Kale Edmiston, E., Zhou, Q., Xu, K., Zhou, Y., … Tang, Y. (2017). Alteration of cortico-limbic-striatal neural system in major depressive disorder and bipolar disorder. Journal of Affective Disorders, 221, 297303. doi:10.1016/j.jad.2017.05.025CrossRefGoogle ScholarPubMed
Jorgensen, K. N., Nerland, S., Norbom, L. B., Doan, N. T., Nesvag, R., Morch-Johnsen, L., … Agartz, I. (2016). Increased MRI-based cortical grey/white-matter contrast in sensory and motor regions in schizophrenia and bipolar disorder. Psychological Medicine, 46, 19711985. doi:10.1017/S0033291716000593CrossRefGoogle ScholarPubMed
Judd, L. L., Akiskal, H. S., Schettler, P. J., Coryell, W., Maser, J., Rice, J. A., … Keller, M. B. (2003). The comparative clinical phenotype and long term longitudinal episode course of bipolar I and II: A clinical spectrum or distinct disorders? Journal of Affective Disorders, 73, 1932. doi:10.1016/s0165-0327(02)00324-5CrossRefGoogle ScholarPubMed
Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., … Pizzagalli, D. A. (2016). Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology, 41, 18221830. doi:10.1038/npp.2015.352CrossRefGoogle ScholarPubMed
Keilholz, S. D. (2014). The neural basis of time-varying resting-state functional connectivity. Brain Connectivity, 4, 769779. doi:10.1089/brain.2014.0250CrossRefGoogle ScholarPubMed
Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. R. (2011). Structural neuroimaging studies in major depressive disorder meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68, 675690. doi:10.1001/archgenpsychiatry.2011.60CrossRefGoogle ScholarPubMed
Konarski, J. Z., McIntyre, R. S., Kennedy, S. H., Rafi-Tari, S., Soczynska, J. K., & Ketter, T. A. (2008). Volumetric neuroimaging investigations in mood disorders: Bipolar disorder versus major depressive disorder. Bipolar Disorders, 10, 137. doi:10.1111/j.1399-5618.2008.00435.xCrossRefGoogle ScholarPubMed
Lan, M. J., Chhetry, B. T., Oquendo, M. A., Sublette, M. E., Sullivan, G., Mann, J. J., & Parsey, R. V. (2014). Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disorders, 16, 378388. doi:10.1111/bdi.12175CrossRefGoogle ScholarPubMed
Lee, S. Y., Chen, S. L., Chang, Y. H., Chen, S. H., Chu, C. H., Huang, S. Y., … Lu, R. B. (2010). The ALDH2 and DRD2/ANKK1 genes interacted in bipolar II but not bipolar I disorder. Pharmacogenetics and Genomics, 20, 500506. doi:10.1097/FPC.0b013e32833caa2bCrossRefGoogle Scholar
Lee, S. Y., Chen, S. L., Chen, S. H., Huang, S. Y., Tzeng, N. S., Chang, Y. H., … Lu, R. B. (2011). The COMT and DRD3 genes interacted in bipolar I but not bipolar II disorder. World Journal of Biological Psychiatry, 12, 385391. doi:10.3109/15622975.2010.505298CrossRefGoogle Scholar
Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage, 104, 430436. doi:10.1016/j.neuroimage.2014.09.007CrossRefGoogle ScholarPubMed
Li, J., Duan, X., Cui, Q., Chen, H., & Liao, W. (2019). More than just statics: Temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients. Psychological Medicine, 49, 852860. doi:10.1017/S0033291718001502CrossRefGoogle ScholarPubMed
Liang, M. J., Zhou, Q., Yang, K. R., Yang, X. L., Fang, J., Chen, W. L., & Huang, Z. (2013). Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI. Plos One, 8, e79999. doi:10.1371/journal.pone.0079999CrossRefGoogle ScholarPubMed
Liao, W., Chen, H., Li, J., Ji, G.-J., Wu, G.-R., Long, Z., … Biswal, B. B. (2019). Endless fluctuations: Temporal dynamics of the amplitude of low frequency fluctuations. IEEE Transactions on Medical Imaging, 38, 25232532. doi:10.1109/tmi.2019.2904555CrossRefGoogle ScholarPubMed
Liao, W., Wu, G.-R., Xu, Q., Ji, G.-J., Zhang, Z., Zang, Y.-F., & Lu, G. (2014). DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connectivity, 4, 780790. doi:10.1089/brain.2014.0253CrossRefGoogle ScholarPubMed
Liberg, B., Adler, M., Jonsson, T., Landen, M., Rahm, C., Wahlund, L. O., … Wahlund, B. (2013). The neural correlates of self-paced finger tapping in bipolar depression with motor retardation. Acta Neuropsychiatrica, 25, 4351. doi:10.1111/j.1601-5215.2012.00659.xCrossRefGoogle ScholarPubMed
Lin, P., Wang, X., Zhang, B., Kirkpatrick, B., Ongur, D., Levitt, J. J., … Wang, X. (2018). Functional dysconnectivity of the limbic loop of frontostriatal circuits in first-episode, treatment-naive schizophrenia. Human Brain Mapping, 39, 747757. doi:10.1002/hbm.23879CrossRefGoogle ScholarPubMed
Liu, F., Hu, M., Wang, S., Guo, W., Zhao, J., Li, J., … Chen, H. (2012). Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: A resting-state fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry,, 39, 326331. doi:10.1016/j.pnpbp.2012.07.004.CrossRefGoogle ScholarPubMed
Liu, Y., Wu, X., Zhang, J., Guo, X., Long, Z., & Yao, L. (2015). Altered effective connectivity model in the default mode network between bipolar and unipolar depression based on resting-state fMRI. Journal of Affective Disorders, 182, 817. doi:10.1016/j.jad.2015.04.009CrossRefGoogle ScholarPubMed
Liu, K., Zhao, X., Lu, X., Zhu, X., Chen, H., Wang, M., … Lv, Z. (2018). Effect of selective serotonin reuptake inhibitor on prefrontal-striatal connectivity is dependent on the level of TNF-alpha in patients with major depressive disorder. Psychological Medicine, 49, 26082616. doi:10.1017/S0033291718003616CrossRefGoogle ScholarPubMed
MacMaster, F. P., Carrey, N., Langevin, L. M., Jaworska, N., & Crawford, S. (2014). Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression. Brain Imaging and Behavior, 8, 119127. doi:10.1007/s11682-013-9264-xCrossRefGoogle ScholarPubMed
Malhi, G. S., Lagopoulos, J., Owen, A. M., Ivanovski, B., Shnier, R., & Sachdev, P. (2007). Reduced activation to implicit affect induction in euthymic bipolar patients: An fMRI study. Journal of Affective Disorders, 97, 109122. doi:10.1016/j.jad.2006.06.005CrossRefGoogle Scholar
Maller, J. J., Thaveenthiran, P., Thomson, R. H., McQueen, S., & Fitzgerald, P. B. (2014). Volumetric, cortical thickness and white matter integrity alterations in bipolar disorder type I and II. Journal of Affective Disorders, 169, 118127. doi:10.1016/j.jad.2014.08.016CrossRefGoogle ScholarPubMed
Marchand, W. R., Lee, J. N., Garn, C., Thatcher, J., Gale, P., Kreitschitz, S., … Wood, N. (2011). Striatal and cortical midline activation and connectivity associated with suicidal ideation and depression in bipolar II disorder. Journal of Affective Disorders, 133, 638645. doi:10.1016/j.jad.2011.04.039CrossRefGoogle ScholarPubMed
Monks, P. J., Thompson, J. M., Bullmore, E. T., Suckling, J., Brammer, M. J., Williams, S. C. R., … Curtis, V. A. (2004). A functional MRI study of working memory task in euthymic bipolar disorder: Evidence for task-specific dysfunction. Bipolar Disorders, 6, 550564. doi:10.1111/j.1399-5618.2004.00147.xCrossRefGoogle ScholarPubMed
Morita, T., Saito, D. N., Ban, M., Shimada, K., Okamoto, Y., Kosaka, H., … Naito, E. (2018). Self-Face recognition begins to share active region in right Inferior parietal lobule with proprioceptive illusion during adolescence. Cerebral Cortex, 28, 15321548. doi:10.1093/cercor/bhy027CrossRefGoogle ScholarPubMed
Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856869. doi:10.1038/nrn2478CrossRefGoogle ScholarPubMed
Ng, T. H., Alloy, L. B., & Smith, D. V. (2019). Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Translational Psychiatry, 9, 293. doi:10.1038/s41398-019-0644-xCrossRefGoogle ScholarPubMed
Nikolaus, S., Muller, H. W., & Hautzel, H. (2017). Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder. Nuklearmedizin-Nuclear Medicine, 56, 191200. doi:10.3413/Nukmed-0893-17-04Google ScholarPubMed
Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15, 619626. doi:10.1162/089892903321662994CrossRefGoogle ScholarPubMed
Paillere Martinot, M. L., Lemaitre, H., Artiges, E., Miranda, R., Goodman, R., Penttila, J., … Consortium, I. (2014). White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms. Molecular Psychiatry, 19, 462470. doi:10.1038/mp.2013.44CrossRefGoogle ScholarPubMed
Pan, P. M., Sato, J. R., Salum, G. A., Rohde, L. A., Gadelha, A., Zugman, A., … Stringaris, A. (2017). Ventral Striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. American Journal of Psychiatry, 174, 11121119. doi:10.1176/appi.ajp.2017.17040430CrossRefGoogle Scholar
Prieto, M. L., Cuellar-Barboza, A. B., Bobo, W. V., Roger, V. L., Bellivier, F., Leboyer, M., … Frye, M. A. (2014). Risk of myocardial infarction and stroke in bipolar disorder: A systematic review and exploratory meta-analysis. Acta Psychiatrica Scandinavica, 130, 342353. doi:10.1111/acps.12293CrossRefGoogle ScholarPubMed
Qiu, L., Xia, M., Cheng, B., Yuan, L., Kuang, W., Bi, F., … Gong, Q. (2018). Abnormal dynamic functional connectivity of amygdalar subregions in untreated patients with first-episode major depressive disorder. Journal of Psychiatry & Neuroscience, 43, 262272. doi:10.1503/jpn.170112CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676682. doi:10.1073/pnas.98.2.676CrossRefGoogle ScholarPubMed
Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., & Calhoun, V. D. (2016). Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645657. doi:10.1016/j.neuroimage.2016.04.051CrossRefGoogle ScholarPubMed
Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897. doi:10.3389/fnhum.2014.00897CrossRefGoogle ScholarPubMed
Reinen, J. M., Chen, O. Y., Hutchison, R. M., Yeo, B. T. T., Anderson, K. M., Sabuncu, M. R., … Holmes, A. J. (2018). The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis. Nature Communications, 9, 1157. doi:10.1038/s41467-018-03462-yCrossRefGoogle ScholarPubMed
Remijnse, P. L., van den Heuvel, O. A., Nielen, M. M., Vriend, C., Hendriks, G. J., Hoogendijk, W. J., … Veltman, D. J. (2013). Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates. Plos One, 8, e59600. doi:10.1371/journal.pone.0059600CrossRefGoogle ScholarPubMed
Rive, M. M., Mocking, R. J., Koeter, M. W., van Wingen, G., de Wit, S. J., van den Heuvel, O. A., … Schene, A. H. (2015). State-Dependent differences in emotion regulation between unmedicated bipolar disorder and major depressive disorder. Jama Psychiatry, 72, 687696. doi:10.1001/jamapsychiatry.2015.0161CrossRefGoogle ScholarPubMed
Rubin-Falcone, H., Zanderigo, F., Thapa-Chhetry, B., Lan, M., Miller, J. M., Sublette, M. E., … Mann, J. J. (2018). Pattern recognition of magnetic resonance imaging-based gray matter volume measurements classifies bipolar disorder and major depressive disorder. Journal of Affective, 227, 498505. doi:10.1016/j.jad.2017.11.043CrossRefGoogle ScholarPubMed
Sasayama, D., Hori, H., Teraishi, T., Hattori, K., Ota, M., Matsuo, J., … Kunugi, H. (2011). Difference in temperament and character inventory scores between depressed patients with bipolar II and unipolar major depressive disorders. Journal of Affective Disorders, 132, 319324. doi:10.1016/j.jad.2011.03.009CrossRefGoogle ScholarPubMed
Satpute, A. B., Kang, J., Bickart, K. C., Yardley, H., Wager, T. D., & Barrett, L. F. (2015). Involvement of sensory regions in affective experience: A meta-analysis. Frontiers In Psychology, 6, 1860. doi:10.3389/fpsyg.2015.01860CrossRefGoogle ScholarPubMed
Schenkel, L. S., Chamberlain, T. F., & Towne, T. L. (2014). Impaired theory of mind and psychosocial functioning among pediatric patients with type I versus type II bipolar disorder. Psychiatry Research, 215, 740746. doi:10.1016/j.psychres.2013.10.025CrossRefGoogle ScholarPubMed
Tarai, S., Mukherjee, R., Gupta, S., Rizvanov, A. A., Palotas, A., Chandrasekhar Pammi, V. S., & Bit, A. (2019a). Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cognitive Neurodynamics, 13, 219237. doi:10.1007/s11571-019-09522-3CrossRefGoogle Scholar
Tarai, S., Mukherjee, R., Qurratul, Q. A., Singh, B. K., & Bit, A. (2019b). Use of prosocial word enhances the processing of language: Frequency domain analysis of human EEG. Journal of Psycholinguistic Research, 48, 145161. doi:10.1007/s10936-018-9595-2CrossRefGoogle Scholar
Thomas, S. A., Christensen, R. E., Schettini, E., Saletin, J. M., Ruggieri, A. L., MacPherson, H. A., … Dickstein, D. P. (2019). Preliminary analysis of resting state functional connectivity in young adults with subtypes of bipolar disorder. Journal of Affective Disorders, 246, 716726. doi:10.1016/j.jad.2018.12.068CrossRefGoogle ScholarPubMed
Vickery, T. J., & Jiang, Y. V. (2009). Inferior parietal lobule supports decision making under uncertainty in humans. Cerebral Cortex, 19, 916925. doi:10.1093/cercor/bhn140CrossRefGoogle ScholarPubMed
Wang, J., Zhang, J., Rong, M., Wei, X., Zheng, D., Fox, P. T., … Jiang, T. (2016). Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Human Brain Mapping, 37, 43164332. doi:10.1002/hbm.23311CrossRefGoogle ScholarPubMed
Wei, Y., Chang, M., Womer, F. Y., Zhou, Q., Yin, Z., Wei, S., … Wang, F. (2018). Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. Journal of Affective Disorders, 236, 266273. doi:10.1016/j.jad.2018.04.069CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14, 339351. doi:10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Yuan, Y., Zhang, Z., Bai, F., Yu, H., You, J., Shi, Y., … Jiang, T. (2009). Larger regional white matter volume is associated with executive function deficit in remitted geriatric depression: An optimized voxel-based morphometry study. Journal of Affective Disorders, 115, 225229. doi:10.1016/j.jad.2008.09.018CrossRefGoogle Scholar
Zhi, M., Hou, Z., We, Q., Zhang, Y., Li, L., & Yuan, Y. (2018). Abnormal spontaneous brain activity is associated with impaired emotion and cognition in hyperthyroidism: A rs-fMRI study. Behavioural Brain Research, 351, 188194. doi:10.1016/j.bbr.2018.05.020CrossRefGoogle ScholarPubMed
Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological Psychiatry, 71, 611617. doi:10.1016/j.biopsych.2011.10.035CrossRefGoogle ScholarPubMed
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material

Download Chen et al. supplementary material(File)
File 10 MB
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *