Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-28T17:25:54.978Z Has data issue: false hasContentIssue false

Distinct brain activity alterations of treatment for bipolar disorders with psychotherapy and drug therapy: activation likelihood estimation meta-analysis

Published online by Cambridge University Press:  01 February 2023

Jingyi Luo
Affiliation:
Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Pengcheng Yi
Affiliation:
Department of Clinical Psychology, the Third People's Hospital of Xiangshan County, Ningbo, China
Meng Liang
Affiliation:
Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Shuyu Zhang
Affiliation:
School of Psychology, the Australian National University, Canberra, Australia
Qian Tao*
Affiliation:
Department of Psychology, School of Basic Medicine, Jinan University, Guangzhou, China
Ni Li
Affiliation:
Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Han Zhang
Affiliation:
Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Jialin Wen
Affiliation:
Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Xinrong Xue
Affiliation:
Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
Chuan Fan*
Affiliation:
Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
Xiaoming Li
Affiliation:
Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
*
Authors for correspondence: Xiaoming Li, E-mail: psyxiaoming@126.com; Chuan Fan, E-mail: 491908470@qq.com; Qian Tao, E-mail: taoqian16@jnu.edu.cn
Authors for correspondence: Xiaoming Li, E-mail: psyxiaoming@126.com; Chuan Fan, E-mail: 491908470@qq.com; Qian Tao, E-mail: taoqian16@jnu.edu.cn

Abstract

Backgrounds

Many studies suggest that both psychotherapy and drug therapy are effective in the treatment of bipolar disorders (BDs). However, the pathophysiology of both types of intervention has not been established definitively.

Methods

An activation likelihood estimation meta-analysis was performed to identify the distinct brain activity alterations between psychotherapy and drug therapy for the treatment of BDs. Articles were identified by searching databases including PubMed, Embase, Cochrane Library, and Web of Science databases. Eligible studies on BDs were published up until 10 June 2021.

Results

21 studies were included and we conducted a meta-analysis for different therapies and imaging tasks. After receiving psychotherapy, BD patients showed increased activation in the inferior frontal gyrus (IFG) and superior temporal gyrus. While after taking drug therapy, BD patients displayed increased activation in the anterior cingulate cortex, medial frontal gyrus, IFG, and decreased activation in the posterior cingulate cortex. The regions of brain activity changes caused by psychotherapy were mostly focused on the frontal areas, while drug therapy mainly impacted on the limbic areas. Different type of tasks also affected brain regions which were activated.

Conclusions

Our comprehensive meta-analysis indicates that these two treatments might have effect on BD in their own therapeutic modes. Psychotherapy might have a top-down effect, while drug therapy might have a bottom-up effect. This study may contribute to differential diagnosis of BDs and would be helpful to finding more accurate neuroimaging biomarkers for BD treatment.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contribute equally to this work.

This article has been updated since its original publication. A notice detailing the edits can be found here: https://doi.org/10.1017/S0033291723000764

References

Adler, C. M., Holland, S. K., Schmithorst, V., Tuchfarber, M. J., & Strakowski, S. M. (2004). Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disorders, 6(6), 540549. doi: 10.1111/j.1399-5618.2004.00117.xCrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (4th ed.). Washington: American Psychiatric Publishing.Google Scholar
Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., … Lowe, M. J. (2005). Antidepressant effect on connectivity of the mood-regulating circuit: An FMRI study. Neuropsychopharmacology, 30(7), 13341344. doi: 10.1038/sj.npp.1300725CrossRefGoogle ScholarPubMed
Aryutova, K., Paunova, R., Kandilarova, S., Stoyanova, K., Maes, M. H., & Stoyanov, D. (2021). Differential aberrant connectivity of precuneus and anterior insula may underpin the diagnosis of schizophrenia and mood disorders. World Journal of Psychiatry, 11(12), 12741287. doi: 10.5498/wjp.v11.i12.1274CrossRefGoogle ScholarPubMed
Benazzi, F. (2007). Bipolar II disorder : Epidemiology, diagnosis and management. CNS Drugs, 21(9), 727740. doi: 10.2165/00023210-200721090-00003CrossRefGoogle ScholarPubMed
Bernhard, B., Schaub, A., Kümmler, P., Dittmann, S., Severus, E., Seemüller, F., … Grunze, H. (2006). Impact of cognitive-psychoeducational interventions in bipolar patients and their relatives. European Psychiatry, 21(2), 8186. doi: 10.1016/j.eurpsy.2005.09.007CrossRefGoogle ScholarPubMed
Beynon, S., Soares-Weiser, K., Woolacott, N., Duffy, S., & Geddes, J. R. (2008). Psychosocial interventions for the prevention of relapse in bipolar disorder: Systematic review of controlled trials. The British Journal of Psychiatry, 192(1), 511. doi: 10.1192/bjp.bp.107.037887CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., & Guariglia, P. (2016). How treatment affects the brain: Meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression. Brain Imaging and Behavior, 10(2), 619627. doi: 10.1007/s11682-015-9429-xCrossRefGoogle ScholarPubMed
Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875887. doi: 10.1016/s0896-6273(00)80219-6CrossRefGoogle ScholarPubMed
Brooks, J. O. III., Wang, P. W., Bonner, J. C., Rosen, A. C., Hoblyn, J. C., Hill, S. J., & Ketter, T. A. (2009). Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder. Journal of Psychiatric Research, 43(3), 181188. doi: 10.1016/j.jpsychires.2008.04.015CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 147. doi: 10.1162/08989290051137585CrossRefGoogle Scholar
Chang, K., DelBello, M., Garrett, A., Kelley, R., Howe, M., Adler, C., … Singh, M. (2018). Neurofunctional correlates of response to quetiapine in adolescents with bipolar depression. Journal of Child and Adolescent Psychopharmacology, 28(6), 379386. doi: 10.1089/cap.2017.0030CrossRefGoogle ScholarPubMed
Chen, C. H., Suckling, J., Lennox, B. R., Ooi, C., & Bullmore, E. T. (2011). A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disorders, 13(1), 115. doi: 10.1111/j.1399-5618.2011.00893.xCrossRefGoogle ScholarPubMed
Dalgleish, T. (2004). The emotional brain. Nature Reviews Neuroscience, 5(7), 583589. doi: 10.1038/nrn1432CrossRefGoogle ScholarPubMed
Deckersbach, T., Peters, A. T., Shea, C., Gosai, A., Stange, J. P., Peckham, A. D., … Nierenberg, A. A. (2018). Memory performance predicts response to psychotherapy for depression in bipolar disorder: A pilot randomized controlled trial with exploratory functional magnetic resonance imaging. Journal of Affective Disorders, 229, 342350. doi: 10.1016/j.jad.2017.12.041CrossRefGoogle ScholarPubMed
Diler, R. S., Ladouceur, C. D., Segreti, A., Almeida, J. R., Birmaher, B., Axelson, D. A., … Pan, L. A. (2013b). Neural correlates of treatment response in depressed bipolar adolescents during emotion processing. Brain Imaging and Behavior, 7(2), 227235. doi: 10.1007/s11682-012-9219-7CrossRefGoogle ScholarPubMed
Diler, R. S., Segreti, A. M., Ladouceur, C. D., Almeida, J. R., Birmaher, B., Axelson, D. A., … Pan, L. (2013a). Neural correlates of treatment in adolescents with bipolar depression during response inhibition. Journal of Child and Adolescent Psychopharmacology, 23(3), 214221. doi: 10.1089/cap.2012.0054CrossRefGoogle ScholarPubMed
Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663681. doi: 10.1017/s1092852900013754CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2013). Hippocampus: Remembering the choices. Neuroimage, 77(6), 9991001. doi: 10.1016/j.neuron.2013.02.034Google ScholarPubMed
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. Neuroimage, 59(3), 23492361. doi: 10.1016/j.neuroimage.2011.09.017CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 29072926. doi: 10.1002/hbm.20718CrossRefGoogle Scholar
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., … Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage, 137, 7085. doi: 10.1016/j.neuroimage.2016.04.072CrossRefGoogle ScholarPubMed
Favre, P., Baciu, M., Pichat, C., De Pourtalès, M. A., Fredembach, B., Garçon, S., … Polosan, M. (2013). Modulation of fronto-limbic activity by the psychoeducation in euthymic bipolar patients: A functional MRI study. Psychiatry Research, 214(3), 285295. doi: 10.1016/j.pscychresns.2013.07.007CrossRefGoogle ScholarPubMed
Foland-Ross, L. C., Bookheimer, S. Y., Lieberman, M. D., Sugar, C. A., Townsend, J. D., Fischer, J., … Altshuler, L. L. (2012). Normal amygdala activation but deficient ventrolateral prefrontal activation in adults with bipolar disorder during euthymia. Neuroimage, 59(1), 738744. doi: 10.1016/j.neuroimage.2011.07.054CrossRefGoogle ScholarPubMed
Garrett, A. S., Chang, K. D., Singh, M. K., Armstrong, C. C., Walshaw, P. D., & Miklowitz, D. J. (2021). Neural changes in youth at high risk for bipolar disorder undergoing family-focused therapy or psychoeducation. Bipolar Disorders, 23(6), 604614. doi: 10.1111/bdi.13045.CrossRefGoogle ScholarPubMed
Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 34(3), 905923. doi: 10.1016/j.neuroimage.2006.09.046CrossRefGoogle ScholarPubMed
Gitlin, M. J., Swendsen, J., Heller, T. L., & Hammen, C. (1995). Relapse and impairment in bipolar disorder. American Journal of Psychiatry, 152(11), 16351640. doi: 10.1176/ajp.152.11.1635Google ScholarPubMed
Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., & Mayberg, H. (2004). Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61(1), 3441. doi: 10.1001/archpsyc.61.1.34CrossRefGoogle ScholarPubMed
Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. Lancet (London, England), 387(10027), 15611572. doi: 10.1016/s0140-6736(15)00241-xCrossRefGoogle ScholarPubMed
Green, M. J., Cahill, C. M., & Malhi, G. S. (2007). The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. Journal of Affective Disorders, 103(1-3), 2942. doi: 10.1016/j.jad.2007.01.024CrossRefGoogle ScholarPubMed
Haldane, M., Jogia, J., Cobb, A., Kozuch, E., Kumari, V., & Frangou, S. (2008). Changes in brain activation during working memory and facial recognition tasks in patients with bipolar disorder with lamotrigine monotherapy. European Neuropsychopharmacology, 18(1), 4854. doi: 10.1016/j.euroneuro.2007.05.009CrossRefGoogle ScholarPubMed
Hautzinger, M., & Meyer, T. D. (2007). [Psychotherapy for bipolar disorder : A systematic review of controlled studies]. Nervenarzt, 78(11), 12481260. doi: 10.1007/s00115-007-2306-0CrossRefGoogle ScholarPubMed
Honig, A., Hofman, A., Rozendaal, N., & Dingemans, P. (1997). Psycho-education in bipolar disorder: Effect on expressed emotion. Psychiatry Research, 72(1), 1722. doi: 10.1016/s0165-1781(97)00072-3CrossRefGoogle ScholarPubMed
Houenou, J., d'Albis, M. A., Vederine, F. E., Henry, C., Leboyer, M., & Wessa, M. (2012). Neuroimaging biomarkers in bipolar disorder. Front Biosci (Elite Ed), 4, 593606. doi: 10.2741/402CrossRefGoogle ScholarPubMed
Ives-Deliperi, V. L., Howells, F., Stein, D. J., Meintjes, E. M., & Horn, N. (2013). The effects of mindfulness-based cognitive therapy in patients with bipolar disorder: A controlled functional MRI investigation. Journal of Affective Disorders, 150(3), 11521157. doi: 10.1016/j.jad.2013.05.074CrossRefGoogle ScholarPubMed
Jogia, J., Haldane, M., Cobb, A., Kumari, V., & Frangou, S. (2008). Pilot investigation of the changes in cortical activation during facial affect recognition with lamotrigine monotherapy in bipolar disorder. British Journal of Psychiatry, 192(3), 197201. doi: 10.1192/bjp.bp.107.037960CrossRefGoogle ScholarPubMed
Keck, P. E. Jr., Kessler, R. C., & Ross, R. (2008). Clinical and economic effects of unrecognized or inadequately treated bipolar disorder. Journal of Psychiatric Practice, 14(Suppl 2), 3138. doi: 10.1097/01.pra.0000320124.91799.2aCrossRefGoogle ScholarPubMed
Kennedy, S. H., Evans, K. R., Krüger, S., Mayberg, H. S., Meyer, J. H., McCann, S., … Vaccarino, F. J. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158(6), 899905. doi: 10.1176/appi.ajp.158.6.899CrossRefGoogle ScholarPubMed
Kennedy, S. H., Konarski, J. Z., Segal, Z. V., Lau, M. A., Bieling, P. J., McIntyre, R. S., & Mayberg, H. S. (2007). Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. American Journal of Psychiatry, 164(5), 778788. doi: 10.1176/ajp.2007.164.5.778CrossRefGoogle Scholar
Kowatch, R. A., Sethuraman, G., Hume, J. H., Kromelis, M., & Weinberg, W. A. (2003). Combination pharmacotherapy in children and adolescents with bipolar disorder. Biological Psychiatry, 53(11), 978984. doi: 10.1016/s0006-3223(03)00067-2CrossRefGoogle ScholarPubMed
Kupferschmidt, D. A., & Zakzanis, K. K. (2011). Toward a functional neuroanatomical signature of bipolar disorder: Quantitative evidence from the neuroimaging literature. Psychiatry Research, 193(2), 7179. doi: 10.1016/j.pscychresns.2011.02.011CrossRefGoogle Scholar
Kurtz, M. M., & Gerraty, R. T. (2009). A meta-analytic investigation of neurocognitive deficits in bipolar illness: Profile and effects of clinical state. Neuropsychology, 23(5), 551562. doi: 10.1037/a0016277CrossRefGoogle ScholarPubMed
Laidi, C., & Houenou, J. (2016). Brain functional effects of psychopharmacological treatments in bipolar disorder. European Neuropsychopharmacology, 26(11), 16951740. doi: 10.1016/j.euroneuro.2016.06.006CrossRefGoogle ScholarPubMed
Laird, A. R., Eickhoff, S. B., Fox, P. M., Uecker, A. M., Ray, K. L., Saenz, J. J. Jr., … Fox, P. T. (2011). The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Research Notes, 4, 349. doi: 10.1186/1756-0500-4-349CrossRefGoogle ScholarPubMed
Lancaster, J. L., Cykowski, M. D., McKay, D. R., Kochunov, P. V., Fox, P. T., Rogers, W., … Mazziotta, J. (2010). Anatomical global spatial normalization. Neuroinformatics, 8(3), 171182. doi: 10.1007/s12021-010-9074-xCrossRefGoogle ScholarPubMed
Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., … Fox, P. T. (2007). Bias between MNI and talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 11941205. doi: 10.1002/hbm.20345CrossRefGoogle ScholarPubMed
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. Journal of Neuroscience, 31(9), 32173224. doi: 10.1523/jneurosci.5626-10.2011CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychological Science, 18(5), 421428. doi: 10.1111/j.1467-9280.2007.01916.xCrossRefGoogle ScholarPubMed
Lipsman, N., McIntyre, R. S., Giacobbe, P., Torres, C., Kennedy, S. H., & Lozano, A. M. (2010). Neurosurgical treatment of bipolar depression: Defining treatment resistance and identifying surgical targets. Bipolar Disorders, 12(7), 691701. doi: 10.1111/j.1399-5618.2010.00868.xCrossRefGoogle ScholarPubMed
Macoveanu, J., Kjærstad, H. L., Vinberg, M., Harmer, C., Fisher, P. M., Knudsen, G. M., … Miskowiak, K. W. (2021). Affective episodes in recently diagnosed patients with bipolar disorder associated with altered working memory-related prefrontal cortex activity: A longitudinal fMRI study. Journal of Affective Disorders, 295, 647656. doi: 10.1016/j.jad.2021.08.110CrossRefGoogle ScholarPubMed
Malhi, G. S., Lagopoulos, J., Sachdev, P. S., Ivanovski, B., Shnier, R., & Ketter, T. (2007). Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disorders, 9(4), 345357. doi: 10.1111/j.1399-5618.2007.00485.xCrossRefGoogle Scholar
Marchand, W. R., Lee, J. N., Thatcher, J., Thatcher, G. W., Jensen, C., & Starr, J. (2007). A preliminary longitudinal fMRI study of frontal-subcortical circuits in bipolar disorder using a paced motor activation paradigm. Journal of Affective Disorders, 103(1-3), 237241. doi: 10.1016/j.jad.2007.01.008CrossRefGoogle ScholarPubMed
Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., & Jerabek, P. A. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48(8), 830843. doi: 10.1016/s0006-3223(00)01036-2CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., … Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156(5), 675682. doi: 10.1176/ajp.156.5.675CrossRefGoogle ScholarPubMed
McGrath, C. L., Kelley, M. E., Holtzheimer, P. E., Dunlop, B. W., Craighead, W. E., Franco, A. R., … Mayberg, H. S. (2013). Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry, 70(8), 821829. doi: 10.1001/jamapsychiatry.2013.143CrossRefGoogle Scholar
Mel'nikov, M. E., Petrovskii, E. D., Bezmaternykh, D. D., Kozlova, L. I., Shtark, M. B., Savelov, A. A., … Natarova, K. A. (2018). fMRI response of parietal brain areas to sad facial stimuli in mild depression. Bulletin of Experimental Biology and Medicine, 165(6), 741745. doi: 10.1007/s10517-018-4255-yCrossRefGoogle ScholarPubMed
Meusel, L.-A. C., Hall, G. B., Fougere, P., McKinnon, M. C., & MacQueen, G. M. (2013). Neural correlates of cognitive remediation in patients with mood disorders. Psychiatry Research: Neuroimaging, 214(2), 142152. doi: 10.1016/j.pscychresns.2013.06.007CrossRefGoogle ScholarPubMed
Miola, A., Cattarinussi, G., Antiga, G., Caiolo, S., Solmi, M., & Sambataro, F. (2022). Difficulties in emotion regulation in bipolar disorder: A systematic review and meta-analysis. Journal of Affective Disorders, 302, 352360. doi: 10.1016/j.jad.2022.01.102CrossRefGoogle ScholarPubMed
Miskowiak, K., Petersen, N., Harmer, C., Ehrenreich, E., Kessing, L., Vinberg, M., … Siebner, H. (2018). Neural correlates of improved recognition of happy faces after erythropoietin treatment in bipolar disorder. Acta psychiatrica Scandinavica, 138(4), 336347. doi: 10.1111/acps.12915CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Macoveanu, J., Vinberg, M., Assentoft, E., Randers, L., Harmer, C. J., ... Kessing, L. V. (2016a). Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders. Acta psychiatrica Scandinavica, 134(3), 249259. doi: 10.1111/acps.12597CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Vinberg, M., Glerup, L., Paulson, O. B., Knudsen, G. M., Ehrenreich, H., … Macoveanu, J. (2016b). Neural correlates of improved executive function following erythropoietin treatment in mood disorders. Psychological Medicine, 46(8), 16791691. doi: 10.1017/s0033291716000209CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097CrossRefGoogle ScholarPubMed
Morgan, K. D., Dazzan, P., Morgan, C., Lappin, J., Hutchinson, G., Suckling, J., … David, A. S. (2010). Insight, grey matter and cognitive function in first-onset psychosis. British Journal of Psychiatry, 197(2), 141148. doi: 10.1192/bjp.bp.109.070888CrossRefGoogle ScholarPubMed
Morris, R. W., Sparks, A., Mitchell, P. B., Weickert, C. S., & Green, M. J. (2012). Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation. Translational Psychiatry, 2(3), e90. doi: 10.1038/tp.2012.16CrossRefGoogle ScholarPubMed
Osuch, E. A., Ketter, T. A., Kimbrell, T. A., George, M. S., Benson, B. E., Willis, M. W., … Post, R. M. (2000). Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biological Psychiatry, 48(10), 10201023. doi: 10.1016/s0006-3223(00)00920-3CrossRefGoogle ScholarPubMed
Paris, J., & Black, D. W. (2015). Borderline personality disorder and bipolar disorder: What is the difference and why does it matter? Journal of Nervous and Mental Disease, 203(1), 37. doi: 10.1097/nmd.0000000000000225CrossRefGoogle ScholarPubMed
Passarotti, A. M., Sweeney, J. A., & Pavuluri, M. N. (2011). Fronto-limbic dysfunction in mania pre-treatment and persistent amygdala over-activity post-treatment in pediatric bipolar disorder. Psychopharmacology (Berl), 216(4), 485499. doi: 10.1007/s00213-011-2243-2CrossRefGoogle ScholarPubMed
Pavuluri, M. N., Birmaher, B., & Naylor, M. W. (2005). Pediatric bipolar disorder: A review of the past 10 years. Journal of American Academy of Child Adolescent Psychiatry, 44(9), 846871. doi: 10.1097/01.chi.0000170554.23422.c1CrossRefGoogle ScholarPubMed
Pavuluri, M. N., Ellis, J. A., Wegbreit, E., Passarotti, A. M., & Stevens, M. C. (2012a). Pharmacotherapy impacts functional connectivity among affective circuits during response inhibition in pediatric mania. Behavioural Brain Research, 226(2), 493503. doi: 10.1016/j.bbr.2011.10.003CrossRefGoogle ScholarPubMed
Pavuluri, M. N., Passarotti, A. M., Fitzgerald, J. M., Wegbreit, E., & Sweeney, J. A. (2012b). Risperidone and divalproex differentially engage the fronto-striato-temporal circuitry in pediatric mania: A pharmacological functional magnetic resonance imaging study. Journal of American Acadamy of Child Adolescent Psychiatry, 51(2), 157170.e155. doi: 10.1016/j.jaac.2011.10.019CrossRefGoogle Scholar
Pavuluri, M. N., Passarotti, A. M., Lu, L. H., Carbray, J. A., & Sweeney, J. A. (2011). Double-blind randomized trial of risperidone versus divalproex in pediatric bipolar disorder: fMRI outcomes. Psychiatry Research, 193(1), 2837. doi: 10.1016/j.pscychresns.2011.01.005CrossRefGoogle ScholarPubMed
Pavuluri, M. N., Passarotti, A. M., Parnes, S. A., Fitzgerald, J. M., & Sweeney, J. A. (2010). A pharmacological functional magnetic resonance imaging study probing the interface of cognitive and emotional brain systems in pediatric bipolar disorder. Journal of Child and Adolescent Psychopharmacology, 20(5), 395406. doi: 10.1089/cap.2009.0105CrossRefGoogle ScholarPubMed
Petersen, T. J. (2006). Enhancing the efficacy of antidepressants with psychotherapy. Journal of Psychopharmacology, 20(3 Suppl), 1928. doi: 10.1177/1359786806064314CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504514. doi: 10.1016/s0006-3223(03)00168-9CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829, 833–857. doi: 10.1038/mp.2008.65CrossRefGoogle ScholarPubMed
Radaelli, D., Poletti, S., Dallaspezia, S., Colombo, C., Smeraldi, E., & Benedetti, F. (2012). Neural responses to emotional stimuli in comorbid borderline personality disorder and bipolar depression. Psychiatry Research, 203(1), 6166. doi: 10.1016/j.pscychresns.2011.09.010CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38(1), 433447. doi: 10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science (New York, N.Y.), 306(5695), 443447. doi: 10.1126/science.1100301CrossRefGoogle ScholarPubMed
Scott, J., Colom, F., & Vieta, E. (2007). A meta-analysis of relapse rates with adjunctive psychological therapies compared to usual psychiatric treatment for bipolar disorders. International Journal of Neuropsychopharmacology, 10(1), 123129. doi: 10.1017/s1461145706006900CrossRefGoogle ScholarPubMed
Simpson, J. R. Jr., Snyder, A. Z., Gusnard, D. A., & Raichle, M. E. (2001). Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 683687. doi: 10.1073/pnas.98.2.683CrossRefGoogle ScholarPubMed
Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121125. doi: 10.1176/jnp.23.2.jnp121CrossRefGoogle ScholarPubMed
Strakowski, S. M., Adler, C. M., Almeida, J., Altshuler, L. L., Blumberg, H. P., Chang, K. D., … Townsend, J. D. (2012). The functional neuroanatomy of bipolar disorder: A consensus model. Bipolar Disorders, 14(4), 313325. doi: 10.1111/j.1399-5618.2012.01022.xCrossRefGoogle ScholarPubMed
Strakowski, S. M., Delbello, M. P., & Adler, C. M. (2005). The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings. Molecular Psychiatry, 10(1), 105116. doi: 10.1038/sj.mp.4001585CrossRefGoogle ScholarPubMed
Strakowski, S. M., Fleck, D. E., Welge, J., Eliassen, J. C., Norris, M., Durling, M. (2016). fMRI brain activation changes following treatment of a first bipolar manic episode. Bipolar Disorders, 18(6), 490501. doi: 10.1111/bdi.12426CrossRefGoogle ScholarPubMed
Szaflarski, J. P., Allendorfer, J. B., Goodman, A. M., Byington, C. G., Philip, N. S., Correia, S., & LaFrance, W. C. Jr. (2022). Diagnostic delay in functional seizures is associated with abnormal processing of facial emotions. Epilepsy & Behavior, 131(Pt A), 108712. doi: 10.1016/j.yebeh.2022.108712CrossRefGoogle ScholarPubMed
Takahashi, T., Malhi, G. S., Wood, S. J., Yücel, M., Walterfang, M., Kawasaki, Y., … Pantelis, C. (2010). Gray matter reduction of the superior temporal gyrus in patients with established bipolar I disorder. Journal of Affective Disorders, 123(1-3), 276282. doi: 10.1016/j.jad.2009.08.022CrossRefGoogle ScholarPubMed
Townsend, J., Bookheimer, S. Y., Foland-Ross, L. C., Sugar, C. A., & Altshuler, L. L. (2010). fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Research, 182(1), 2229. doi: 10.1016/j.pscychresns.2009.11.010CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 113. doi: 10.1002/hbm.21186CrossRefGoogle ScholarPubMed
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59(6), 10371050. doi: 10.1016/j.neuron.2008.09.006CrossRefGoogle ScholarPubMed
Welander-Vatn, A., Jensen, J., Otnaess, M. K., Agartz, I., Server, A., Melle, I., & Andreassen, O. A. (2013). The neural correlates of cognitive control in bipolar I disorder: An fMRI study of medial frontal cortex activation during a Go/No-go task. Neuroscience Letters, 549, 5156. doi: 10.1016/j.neulet.2013.06.010CrossRefGoogle ScholarPubMed
Xuan, R., Li, X., Qiao, Y., Guo, Q., Liu, X., Deng, W., … Zhang, L. (2020). Mindfulness-based cognitive therapy for bipolar disorder: A systematic review and meta-analysis. Psychiatry Research, 290, 113116. doi: 10.1016/j.psychres.2020.113116CrossRefGoogle ScholarPubMed
Yang, H., Lu, L. H., Wu, M., Stevens, M., Wegbreit, E., Fitzgerald, J., … Pavuluri, M. N. (2013). Time course of recovery showing initial prefrontal cortex changes at 16 weeks, extending to subcortical changes by 3 years in pediatric bipolar disorder. Journal of Affective Disorders, 150(2), 571577. doi: 10.1016/j.jad.2013.02.007CrossRefGoogle ScholarPubMed
Zhang, J., Liu, T., Shi, Z., Tan, S., Suo, D., Dai, C., … Liu, M. (2022). Impaired self-referential cognitive processing in bipolar disorder: A functional connectivity analysis. Frontiers in Aging Neuroscience, 14, 754600. doi: 10.3389/fnagi.2022.754600CrossRefGoogle ScholarPubMed
Zimmerman, M. E., DelBello, M. P., Getz, G. E., Shear, P. K., & Strakowski, S. M. (2006). Anterior cingulate subregion volumes and executive function in bipolar disorder. Bipolar Disorders, 8(3), 281288. doi: 10.1111/j.1399-5618.2006.00298.xCrossRefGoogle ScholarPubMed
Supplementary material: File

Luo et al. supplementary material

Luo et al. supplementary material

Download Luo et al. supplementary material(File)
File 32 KB