Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T14:02:21.708Z Has data issue: false hasContentIssue false

XVI.—A Partial Analysis of Drosophila Larval Hæmolymph*

Published online by Cambridge University Press:  11 June 2012

Michael Begg
Affiliation:
Department of Zoology, University of Aberdeen
William J. Cruickshank
Affiliation:
Department of Zoology, Birkbeck College, University of London.
Get access

Synopsis

Physical and chemical methods of analysis suitable for volumes of Drosophila hæmolymph under I μl. are described. The osmotic pressure of hæmolymph is equivalent to 1·05 per cent NaCl. The pH is 6·6·6·7. Na+, K+, Ca2+, Mg2+, Cl and PO3−4 occur in concentrations of 56·5, 40·2, 8, 20·8, 42·2 and 2·8 mM/1. Probably the only sugar present is trehalose. A rough analysis for amino-acids indicates that they contribute an amount to the osmotic pressure equivalent to about 0·4 per cent NaCl. These results are discussed in relation to tissue culture.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Bacon, J. S. D., and Edelman, J., 1951. “The Carbohydrates of the Jerusalem Artichoke and other Compositæ“, Biochem. J., 48, 114126.CrossRefGoogle ScholarPubMed
Baldes, E. J., 1934. “A Micromethod of Measuring Osmotic Pressure”, J. Set. Instrutn., II, 223—225.Google Scholar
Beale, G. H., 1954. The Genetics of Paramecium aurelia. Cambridge.Google Scholar
Begg, M., 1955. “Osmotic Pressure of Drosophila Larval Hæmolymph“, Drosophila Inform. Serv., 29, 105.Google Scholar
Begg, M., and Robertson, F. W., 1950. “Nutritional Requirements of Drosophila melanogaster”, J. Exp. Biol., 26, 380387.CrossRefGoogle Scholar
Begg, M., and Sang, J. H., 1945. “Time of Action of the gene antennaless of Drosophila melanogaster”, J. Exp. Biol., 21, 14.CrossRefGoogle Scholar
Berenblum, I., and Chain, E., 1938. “An Improved Method for the Colorimetric Determination of Phosphate”, Biochem. J., 32, 295298.CrossRefGoogle ScholarPubMed
Boche, R. D., and Buck, J. B., 1942. “Studies on the hydrogen-ion Concentration of Insect Blood and their Bearing on in vitro cytological Technique”, Physiol. Zool., 15, 293303.CrossRefGoogle Scholar
Castiglioni, M. C, and Rezzonieo Raimondi, G. R., 1961. “First Results of Tissue Culture in Drosophila”, Experientia, 17, 8890.CrossRefGoogle ScholarPubMed
Chalmers, R. A., and Thomson, D. A., 1958. “A Method for the Determination of Phosphorus in Organic Compounds”, Analyt. Chitn. Ada., 18, 575577.CrossRefGoogle Scholar
Chen, P. S., and Hadorn, E., 1954. “Vergleichende Untersuchungen über die freinen Aminosäuren in der larvalen Hæmolymphe von Drosophila, Ephestia und Corethra”, Rev. Suisse Zool., 61, 437451.CrossRefGoogle Scholar
Clark, E. W., and Craig, R., 1953. “The Calcium and Magnesium in the hæmolymph of Certain Insects”, Physiol. Zoöl., 26, 101107.CrossRefGoogle Scholar
Croghan, P. C, and Lockwood, A. M. P., 1960. “The Composition of the Hæmolymph of the Larva of Drosophila melanogaster”, J. Exp. Biol., 37, 339343.CrossRefGoogle Scholar
Day, M. F., and Grace, T. D. C, 1959. “Culture of Insect Tissues“, Ann. Rev. Entomol., 4, 1738.CrossRefGoogle Scholar
De Kock, P. C, and Morrison, R. I., 1958. “The Metabolism of Chlorotic Leaves. I. Amino Acids”, Biochem. J., 70, 266272.CrossRefGoogle Scholar
Fischer, I., and Gottschewski, G., 1939. “Gewebekulture bei Drosophila”, Naturwissenschaften, 27, 391392.CrossRefGoogle Scholar
Gordon, C, and Sang, J. H., 1941. “The Relation between Nutrition and Exhibition of the Gene Antennaless (Drosophila melanogaster)”, Proc. Roy Soc. B., 130, 151184.Google Scholar
Harris, H., 1959. Human Biochemical Genetics. Cambridge.Google Scholar
Horikawa, M., 1958. “Developmental-genetic Studies of Tissue Cultured Eye Discs of Drosophila Melanogaster—1. Growth, Differentiation and Tryptophan Metabolism”, Cytologia, 23, 468477.CrossRefGoogle Scholar
Horikawa, M., and Kuroda, Y., 1959. ”In vitro Cultivation of Blood Cells of Drosophila melanogaster in a Synthetic Medium”, Nature, Lond., 184, 20172018.CrossRefGoogle Scholar
Long, C, 1943. “The in vitro Oxidation of Pyruvic Acid and a-Ketobutyric Acid by Ground Preparations of Pigeon Brain. The Effect of Inorganic Phosphate and Adenine Nucleotide”, Biochem. J., 37, 215225.CrossRefGoogle Scholar
Martignoni, M. E., 1960. “Problems of Insect Tissue Culture”, Experientia, 16, 125128.CrossRefGoogle ScholarPubMed
Montgomery, H., 1935. “Quantitive Studies on the Composition of Glomerular Urine XII“, J. Biol. Chem., 110, 749761.CrossRefGoogle Scholar
Partridge, S. M., 1948Filter-paper Partition Chromatography of Sugars”, Biochem. J., 42, 238250.CrossRefGoogle ScholarPubMed
Ramsay, J. A., Brown, R. H. J., and Croghan, P. C, 1955. “Electrometric Titration of Chloride in Small Volumes”, J. Exp. Biol., 32, 822829.CrossRefGoogle Scholar
Ramsay, J. A., Faloon, S. W. H. W., and Machin, K. E., 1951. “An Integrating Flame Photometer for Small Quantities”, J. Sci. Instrum., 28, 7580.CrossRefGoogle Scholar
Spiegelman, S., and Dunn, R., 1947. “Interactions between Enzyme Forming Systems during Adaptation”, J. Gen. Physiol., 31, 153173.CrossRefGoogle ScholarPubMed
Stern, C, 1940. “Growth in vitro of the Testes of Drosophila”, Growth, 4, 377382.Google Scholar
Tobias, J. M. J., 1948. “The High Potassium and Low Sodium in the Body Fluid and Tissues of a Phytophagous Insect, the Silkworm Bombyx mori and the Change before Pupation”, J. Cell. Comp. Physiol., 31, 143148.CrossRefGoogle ScholarPubMed
Trevelyan, W. E., Procter, D. P., and Harrison, J. S., 1950. “Detection of Sugars on Paper Chromatograms“, Nature, Lond., 166, 444445.CrossRefGoogle ScholarPubMed
Wood, D. W., 1957. “The Effect of Ions upon Neuromuscular Transmission in a Herbivorous Insect”, J. Physiol., 138, 119139.CrossRefGoogle Scholar
Wyatt, G. R., Loughheed, T. C, and Wyatt, S. S., 1956. “The Chemistry of Insect Hæmolymph”, J. Gen. Physiol., 39, 853867.CrossRefGoogle Scholar
Wyatt, S. S., 1956. “Culture in vitro of Tissue from the Silkworm, Bombyx mori L.“, J. Gen. Physiol., 39, 841852.CrossRefGoogle ScholarPubMed