Hostname: page-component-6d856f89d9-gndc8 Total loading time: 0 Render date: 2024-07-16T05:55:46.394Z Has data issue: false hasContentIssue false

XI.—The Cytology of Pharaoh's Ant, Monomorium pharaonis (L.)*

Published online by Cambridge University Press:  11 June 2012

Ian C. Smith
Affiliation:
Zoology Department, University of Glasgow
A. D. Peacock
Affiliation:
Natural History Department, University of St Andrews, Queen's College, Dundee.
Get access

Synopsis

Pharaoh's Ant, Monomorium pharaonis (L.), is arrhenotokously parthenogenetic, conforming essentially to the pattern of reproduction characteristic of Hymenoptera generally. The female is diploid, 2n = 22, the male haploid, n = 11, in certain somatic cells and in the gonia, though polyploidy exists in some larval tissues. The 11 discrete chromosomes of the male cells comprise a single genome, in which are distinctive only one large clubbed chromosome and at least one of intermediate size. Spermatogenesis is characterized by a first abortive division and a second equational division, resulting in two spermatozoa being derived from each haploid spermatogonium. Spermateleosis is described in some detail. Certain peculiar features are discussed, viz. the cytoplasmic buds appearing during spermatogenesis; unequal second spermatocyte divisions; the single chromosome sometimes observed as lying apart from the other chromosomes during first spermatocyte metaphase; the division and grouping of polar body chromosomes. For reasons given, several recent conclusions of Whelden and Haskins (1953) regarding the cytology of ants are regarded as mistaken.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Formerly of Natural History Department, University of St Andrews, University College, Dundee.
*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

References to Literature

Armbruster, L., 1913. “Chromosomenverhältnisse bei der Spermatogenese solitarer Apiden”, Arch. Zellforsch., II, 242326.Google Scholar
Bier, K., 1952. “Zur scheinbaren Thelytokie der Ameisengattung Lasius”, Naturwissenschaften, 39, 433.CrossRefGoogle Scholar
Darlington, C. D., and La Cour, L. F., 1947. The Handling of Chromosomes. London.Google Scholar
Doncaster, L., 1906. “Spermatogenesis of the hive bee (Apis mellifica)”, Anat. Anz., 29, 490491.Google Scholar
Doncaster, L., 1907. “Spermatogenesis of the honey bee (Apis mellifica). Correction”, Anat. Anz., 31, 168169.Google Scholar
Dreyfus, A., and Breuer, M. E., 1944. “Chromosomes and sex determination in the parasitic Hymenopteron Telenomus fariai (Lima)”, Genetics, 29, 7582.CrossRefGoogle Scholar
Granata, L., 1909. “Le divisioni degli spermatociti di Xylocopa violacea L.”, Biologica, Torino, 2, 112.Google Scholar
Granata, L., 1913. “Ancora sulle divisione degli spermatociti di Xylocopa violacea”, Monit. Zool. Ital., 24, 3135.Google Scholar
Haskins, C. P., and Enzmann, E. V., 1945. “On the occurrence of impaternate females in the Formicidæ”, J. N.Y. Ent. Soc., 53, 263277.Google Scholar
Henking, H., 1892. “Untersuchungen über die ersten Entwicklungs-vorgänge in den Eiern der Insekten. III. Spezielles und Allgemeines”, Z. Wiss. Zool., 54, 1274.Google Scholar
Hogben, L. T., 1920. “Studies in Synapsis I and II”, Proc. Roy. Soc. Lond., B, 91, 268–293, 305329.Google Scholar
Huskins, L. C., 1948. “Segregation and reduction in somatic tissues”, J. Hered., 39 (11) 311325.CrossRefGoogle Scholar
Jack, R. W., 1916. “Parthenogenesis amongst the workers of the Cape Honey-Bee”, Trans. R. Ent. Soc. Lond., 19161917, 396403.CrossRefGoogle Scholar
Lams, M. H., 1908. “Les Spermatocytes chez la fourmi Camponotus herculeanus”, Arch. Zellforsch., 1, 528537.Google Scholar
Machida, J., 1934. “The spermatogenesis of the three species of Polistes (Hymenoptera)”, Proc. Imp. Acad. Japan, 10, 515518.CrossRefGoogle Scholar
Meves, F., 1907. “Die Spermatocytenteilungen bei der Honigbiene (Apis mellifica O.), nebst Bemerkungen über Chromatinreduktion”, Arch. Mikr. Anat., 71, 414491.CrossRefGoogle Scholar
Nachtsheim, H., 1913. “Cytologische Studien über die Geschlechtsbestimmung bei der Honigbiene (Apis mellifica L.)”, Arch. Zellforsch., 11, 169241.Google Scholar
Pardi, L., 1947. “Ricerche sui Polistina. 8”, Sci. Genet., 3, 1422.Google Scholar
Peacock, A. D., 1950. “Studies on Pharaoh's Ant, Monomorium pharaonis (L.). 4. Egg-production”, Entom. Mon. Mag., 86, 294298.Google Scholar
Peacock, A. D., and Baxter, A. T., 1949. “Studies on Pharaoh's Ant, Monomorium pharaonis (L.). 1. The rearing of artificial colonies”, Entom. Mon. Mag., 85, 256260.Google Scholar
Peacock, A. D., and Baxter, A. T., 1950. “Studies on Pharaoh's Ant, Monomorium pharaonis (L.). 3. Life history”, Entom. Mon. Mag., 86, 171178.Google Scholar
Peacock, A. D., Hall, D. W., Smith, I. C., and Baxter, A. T., 1954. “Studies on Pharaoh's Ant, Monomorium pharaonis (L.). 8. Male production by parthenogenesis”, Entom. Mon. Mag., 90, 154158.Google Scholar
Petrunkewitsch, A., 1903. “Das Schicksal von Richtungskörper in Drohnenei”, Zool. Jb. Abt. Anat., 17, 481516.Google Scholar
Ris, H., and Kerr, W. E., 1952. “Sex determination in the honey bee”, Evolution, 6 (4), 444445.CrossRefGoogle Scholar
Risler, H., 1954. “Die somatische Polyploidie in der Entwicklung der Honigbiene (Apis mellifica L.) und die wiederherstellung der Diploidie bei den Drohnen”, Z. Zellforsch., 41, 178.CrossRefGoogle Scholar
Sanderson, Ann R., 1933. “The cytology of parthenogenesis in Tenthredinidæ”, Genetica, 14; also St Andrews University Publication, No. 33, 321451.CrossRefGoogle Scholar
Sanderson, Ann R., and Hall, D. W., 1948. “The cytology of the honey bee, Apis mellifica L.”, Nature, 162, 3435.CrossRefGoogle ScholarPubMed
Sanderson, Ann R., and Hall, D. W., 1951. “Sex in the honey-bee”, Endeavour, 10, 37.Google Scholar
Schleip, W., 1908. “Die Richtungskörperbildung im Ei von Formica sanguinea”, Zool. Jb. Abt. Anat., 26, 651682.Google Scholar
Schmuck, M. L., and Metz, C. W., 1913. “A method for the study of chromosomes in entire insect eggs”, Science, 74, 600.CrossRefGoogle Scholar
Schrader, F., and Hughes-Schrader, Sally, 1931. “Haploidy in Metazoa”, Quart. Rev. Biol, 6, 411438.CrossRefGoogle Scholar
Silvestri, F., 1907. “Contribuzione alla conoscenza biologica degli Imenotteri parasitici, 1”, Boll. Zool. Lab. Portici, 1, 1764.Google Scholar
Smith, I. C., 1952. “Growing-points in cytology, a report of papers read at the British Association in Belfast”, author anon, Nature, 170, 655.Google Scholar
Smith, S. G., 1943. “Techniques for the study of insect chromosomes”, Contrib. 2182, Division of Entomology, Science Service, Department of Agriculture, Ottawa”, Canad. Entom., 75, 2134.CrossRefGoogle Scholar
Suomalainen, E., 1950. “Parthenogenesis in animals”, Advanc. Genet., 3, 193253.CrossRefGoogle ScholarPubMed
Walker, Margaret C., 1949. “Cytoplasmic bud formation in hymenopteran spermatogenesis”, Nature, 163, 645646.CrossRefGoogle ScholarPubMed
Whelden, R. M., and Haskins, C. P., 1953. “Cytological and histological studies in the Formicidæ. 1. Chromosome morphology and the problem of sex determination”, Ann. Ent. Soc. Amer., 46 (4), 579595.CrossRefGoogle Scholar
White, M. J. D., 1954. Animal Cytology and Evolution. 2nd Ed. Cambridge University Press.Google Scholar
Whiting, P. W., 1945. “The evolution of male haploidy”, Quart. Rev. Biol., 20, 231260.CrossRefGoogle ScholarPubMed