Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-29T18:51:49.010Z Has data issue: false hasContentIssue false

Splicing of plant pre-mRNAs

Published online by Cambridge University Press:  05 December 2011

Craig G. Simpson
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
Gordon G. Simpson
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
Gillian Clark
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
David J. Leader
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
Petra Vaux
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
F. Guerineau
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
Robbie Waugh
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
John W. S. Brown*
Affiliation:
Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K.
*
1 To whom correspondence should be addressed.
Get access

Synopsis

Pre-messenger RNA (pre-mRNA) splicing or the removal of introns from pre-mRNA transcripts is a key process in the maturation of mRNA. This process requires the assembly of a large complex of RNA and protein molecules, called the splicosome, on the pre-mRNA transcripts. Molecular and biochemical analyses of plant intron sequence and structure and of the components of the plant spliceosome are providing information on the mechanism of intron recognition and splice site selection in both monocoty-ledonous and dicotyledonous plants. This knowledge will help in gaining an understanding of phenomena such as the difference in splicing between monocotyledonous and dictoyledonous plants, the enhancement of gene expression brought about by the presence of some introns and alternative splicing. The importance of introns and pre-mRNA splicing to accurate and regulated gene expression, therefore, is of direct relevance to transgene expression and genetic manipulation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, S., Kiss, T. & Solymosy, F. 1989. Molecular analysis of eight Ul RNA gene candidates from tomato that could potentially be transcribed into U1 RNA sequence variants differing from each other in similar regions of secondary structure. Nucleic Acids Research 17, 6319–37.CrossRefGoogle Scholar
Bentley, R. C. & Keene, J. D. 1991. Recognition of U1 and U2 small nuclear RNAs can be altered by a 5-amino-acid segment in the U2 small nuclear ribonucleoprotein particle (snRNP) B” protein and through interactions with U2 snRNP-A' protein. Molecullar and Cellular Biology 11, 1829–39.Google ScholarPubMed
Berman, S. A., Bursztain, S., Bowen, B. & Gilbert, W. 1990. Localization of an acetylcholine receptor intron to the nuclear membrane. Science 247, 212–14.CrossRefGoogle Scholar
Bermingham, J. R. & Scott, M. P. 1988. Developmentally regulated alternative splicing of transcripts from the Drosophila homeotic gene Anntennapedia can produce four different proteins. EMBO Journal 7, 3211–22.CrossRefGoogle ScholarPubMed
Bornstein, P., McKay, J., Liska, D. J., Apone, S. & Devarayalu, S. 1988. Interactions between the promoter and first intron are involved in transcriptional control of α 1(1) collagen gene expression. Molecular and Cellular Biology 8, 4851–7.Google Scholar
Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. 1978. Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proceedings of the National Academy of Sciences, USA 75, 4853–7.CrossRefGoogle ScholarPubMed
Brown, J. W. S. 1986. A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Research 14, 9549–59.CrossRefGoogle ScholarPubMed
Brown, J. W. S. & Waugh, R. 1989. Maize U2snRNAs: gene sequence and expression. Nucleic Acids Research 17, 89919001.CrossRefGoogle ScholarPubMed
Callis, J., Fromm, M. & Walbot, V. 1987. Introns increase gene expression in cultured maize cell. Genes & Development 1, 1183–200.CrossRefGoogle Scholar
Egeland, D. B., Sturtevant, A. P. & Schuler, M. A. 1989. Molecular analysis of dicot and monocot small nuclear RNA populations. The Plant Cell 1, 633–43.Google ScholarPubMed
Eperon, L. P., Graham, I. R., Griffiths, A. D. & Eperon, I. C. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? Cell 54, 393401.CrossRefGoogle ScholarPubMed
Fu, X-Y. & Manley, J. L. 1987. Factors influencing alternative splice site utilisation in vivo. Molecular and Cellular Biology 7, 738–48.Google ScholarPubMed
Frey, M., Tavantzis, S. M. & Saedler, H. 1989. The maize En-l/Spm element transposes in potato. Molecular and General Genetics 217, 172–7.CrossRefGoogle Scholar
Goodall, G. J. & Filipowicz, W. 1989. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58, 473–83.CrossRefGoogle ScholarPubMed
Goodall, G. J. & Filipowicz, W. 1990. The minimum functional length of pre-mRNA introns in monocots and dicots. Plant Molecular Biology 14, 727–33.CrossRefGoogle ScholarPubMed
Goodall, G. J., Kiss, T. & Filipowicz, W. 1991. Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxford Surveys in Plant Molecular and Cell Biology 7, (in press).CrossRefGoogle Scholar
Green, M. R. 1986. Pre-mRNA splicing. Annual Review of Genetics 20, 671708.CrossRefGoogle ScholarPubMed
Guthrie, C. & Patterson, B. 1988. Spliceosomal snRNAs. Annual Review of Genetics 22, 387419.CrossRefGoogle ScholarPubMed
Hanley, B. A. & Schuler, M. A. 1988. Plant intron sequences: evidence for distinct groups of introns. Nucleic Acids Research 16, 7159–76.CrossRefGoogle ScholarPubMed
Hanley, B. A. & Schuler, M. A. 1991. cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei. Nucleic Acids Research 19, 1861–9.CrossRefGoogle ScholarPubMed
Hershberger, R. P. & Culp, L. A. 1990. Cell-type-specific expression of alternatively spliced human fibronectin IIICS mRNAs. Molecular and Cellular Biology 10, 662–71.Google ScholarPubMed
Huang, M. T. P. & Gorman, C. M. 1990. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Research 18, 937–47.CrossRefGoogle ScholarPubMed
Hunt, A. G., Mogen, B. D., Chu, N. M. & Chua, N.-H. 1991. The SV40 small t intron is accurately and efficiently spliced in tobacco cells. Plant Molecular Biology 16, 375–9.CrossRefGoogle Scholar
Keith, B. & Chua, N-H. 1986. Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO Journals, 2419–525.Google Scholar
Kenan, D. J., Query, C. C. & Keene, J. D. 1991. RNA recognition: towards identifying determinants of specificity. TIBS 16, 214–20.Google ScholarPubMed
Koes, R. E., Spelt, C. E., van den Elzen, P. J. M. & Mol, J. N. M. 1989. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene 81, 245–57.CrossRefGoogle ScholarPubMed
Kyozuka, J., Izawa, T., Nakajima, M. & Shimamoto, K. 1990. Effect of the promoter and first intron of maize Adh-1 on foreign gene expression in rice. Maydica 35, 353–7.Google Scholar
Krainer, A. R. & Maniatis, T. 1988. RNA Splicing. In Transcription and splicing, pp. 131206, eds Hames, B. D. & Glover, D. M. Oxford IRL Press.Google Scholar
Libri, D., Piseri, A. & Fiszman, M. Y. 1991. Tissue-specific splicing in vivo of the β-tropomyosin gene: Dependance on an RNA secondary structure. Science 252, 1842–5.CrossRefGoogle Scholar
Lockard, R. E., Currey, K., Browner, M., Lawrence, C. & Maizel, J. 1986. Secondary structure model for mouse βMaj globin mRNA derived from enzymatic digestion data, comparative sequence and computer analysis. Nucleic Acids Research 14, 5827–41.CrossRefGoogle Scholar
Luehrsen, K. R. & Walbot, V. 1991. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Molecular and General Genetics 225, 8193.CrossRefGoogle ScholarPubMed
Lührmann, R., Kastner, B. & Bach, M. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochemica et Biophysica Acta 1087, 265–92.CrossRefGoogle ScholarPubMed
McCullough, A. J., Lou, H. & Schuler, M. A. 1991. In vivo analysis of plant pre-mRNA splicing using an autonomously replicating vector. Nucleic Acids Research 19, 3001–9.CrossRefGoogle ScholarPubMed
McElroy, D., Zhang, W., Cao, J. & Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell 2, 163–71.Google ScholarPubMed
Maas, C., Laufs, J., Grant, S., Korfhage, C. & Wern, W. 1991. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000 fold. Plant Molecular Biology 16, 199207.CrossRefGoogle ScholarPubMed
Maniatis, T. & Reed, R. 1987. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature 325, 673–8.CrossRefGoogle ScholarPubMed
Mascarenhas, D., Mettler, I. J., Pierce, D. A. & Lowe, H. W. 1990. Intron-mediated enhancement of heterologous gene expression in maize. Plant Molecular Biology 15, 913920.CrossRefGoogle ScholarPubMed
Masson, P., Rutherford, G., Banks, J. A. & Federoff, N. 1989. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58, 755–65.CrossRefGoogle ScholarPubMed
Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Research 10, 459–72.CrossRefGoogle ScholarPubMed
Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. 1990. Crystal structure of the RNA-binding domain of the Ul small nuclear ribonucleoprotein A. Nature 348, 515–20.CrossRefGoogle ScholarPubMed
Niwa, M., Rose, S. D. & Berget, S. M. 1990. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes & Development 4, 1552–9.CrossRefGoogle ScholarPubMed
Oard, J. H., Paige, D. & Dvorak, J. 1989. Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Reports 8, 156–60.CrossRefGoogle ScholarPubMed
d'Orval, B. C., Carafa, Y. d'A., Sirand-Pugnet, P. Gallego, M., Brody, E. & Marie, J. 1991. RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science 252, 1823–8.CrossRefGoogle Scholar
Oshima, R. G., Abrams, L. & Kulesh, D. 1990. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes & Development 4, 835–48.CrossRefGoogle ScholarPubMed
Ottavio, L., Cheng, C-D., Rizzo, M-G., Travali, S., Casadevall, C. & Baserga, R. 1990. Importance of introns in the growth regulation of mRNA levels of the proliferating cell nuclear antigen gene. Molecular and Cellular Biology 10, 303–9.Google ScholarPubMed
Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. 1986. Annual Review of Biochemistry 55, 1119–50.CrossRefGoogle Scholar
Palfi, Z., Bach, M., Solymosy, F. & Lührmann, R. 1989. Purification of the major UsnRNPs from broad bean nuclear extracts and characterisation of their protein constituents. Nucleic Acids Research 17, 1445–58.CrossRefGoogle ScholarPubMed
Parker, R., Siliciano, P. G. & Guthrie, C. 1987. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–39.CrossRefGoogle Scholar
Patterson, B. & Guthrie, C. 1991. A U-rich tract enhances usage of an alternative 3' splice site in yeast. Cell 58, 473–83.Google Scholar
Peterhaus, A., Datta, S. K., Datta, K., Goodall, G. J. Potrykus, I. P. & Paszkowski, J. 1990. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Molecular General Genetics 222, 361–8.CrossRefGoogle Scholar
Raboy, V., Kim, H-Y., Schiefelbein, J. W. & Nelson, O. E. Jr. 1989. Deletions in a dSpm insert in a bronze-I allele alter RNA processing and gene expression. Genetics 122, 695703.CrossRefGoogle Scholar
Reed, R. & Maniatis, T. 1986. A role for exon sequences and splice site proximity in splice site selection. Cell 46, 681–90.CrossRefGoogle ScholarPubMed
Robberson, B. L., Cote, G. J. & Berget, S. M. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Molecular and Cellular Biology 10, 8494.Google ScholarPubMed
Ruby, S. W. & Abelson, J. 1991. Pre-mRNA splicing in yeast. Trends in Genetics 7, 7985.CrossRefGoogle ScholarPubMed
Ruskin, B. & Green, M. R. 1985. An RNA processing activity that debranches RNA lariats. Science 229, 135–40.CrossRefGoogle ScholarPubMed
Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. 1990a. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins Ul A and U2B” and their cognate RNAs. Nature 345, 502–6.CrossRefGoogle Scholar
Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. 1990b. The U2B” RNP motif as a site of protein-protein interaction. EM BO Journal 9, 3675–81.Google ScholarPubMed
Simpson, G. G., Vaux, P., Clark, G., Waugh, R., Beggs, J. D. & Brown, J. W. S. 1991. Evolutionary conservation of the spliceosomal protein U2B”. Nucleic Acids Research 19, 5213–7.CrossRefGoogle ScholarPubMed
Sherwood, A. L., Bottenus, R. E., Martzen, M. R. & Bornstein, P. 1990. Structural and functional analysis of the first intron of the human α2(I) collagen-encoding gene. Gene 89, 239–44.CrossRefGoogle Scholar
Smith, C. W. J., Patton, J. G. & Nadal-Ginard, B. 1989. Alternative splicing in the control of gene expression. Annual Review of Genetics 23, 527–77.CrossRefGoogle ScholarPubMed
Solnick, D. & Lee, S. I. 1987. Amount of RNA secondary structure required to induce an alternative splice. Molecular and Cellular Biology 7, 3194–8.Google ScholarPubMed
Steitz, J. A., Black, D. L., Gerke, V., Parker, K. A., Krämer, A., Frendeway, D. & Keller, W. 1988. Functions of the abundant UsnRNPs. In Structure and function of major and minor small nuclear ribonucleoprotein particles pp. 115–54, ed. Birnstiel, M. L. Berlin: Springer Verlag.CrossRefGoogle Scholar
Streuli, M. & Saito, H. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO Journal 8, 787–96.CrossRefGoogle ScholarPubMed
Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K. & Nakamura, K. 1990. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Research 18, 6767–70.CrossRefGoogle ScholarPubMed
Tollervey, D. 1987. High level complexity of small nuclear RNAs in fungi and plants. Journal of Molecular Biology 196, 355–61.CrossRefGoogle ScholarPubMed
Vankan, P. & Filipowicz, W. 1988. Structure of U2snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts. EMBO Journal 7, 791–9.CrossRefGoogle Scholar
Vankan, P. & Filipowicz, W. 1989. A UsnRNA gene-specific upstream element and a -30 ‘TATA’ box are required for transcription of the U2snRNA gene of Arabidopsis thaliana. EMBO Journal 8, 3875–82.CrossRefGoogle Scholar
Waibel, F. & Filipowicz, W. 1990. RNA polymerase specificity of transcription of Arabidopsis UsnRNA genes determined by promoter element spacing. Nature 346, 199202.CrossRefGoogle Scholar
Waugh, R., Clark, G., Vaux, P. & Brown, J. W. S. 1991. Sequence and expression of potato U2snRNA genes. Nucleic Acids Research 19, 249–56.CrossRefGoogle ScholarPubMed
Weil, D., Brosset, S. & Dautry, F. 1990. RNA processing is a limiting step for murine tumor necrosis factor β expression in response to interleukin-2. Molecular and Cellular Biology 10, 5865–75.Google ScholarPubMed
Werneke, J. M., Chatfield, J. M. & Ogren, W. L. 1989. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase-activase polypeptides in spinach and Arabidopsis. The Plant Cell 1, 815–25.Google ScholarPubMed
Wiebauer, K., Herrero, J-J. & Filipowicz, W. 1988. Nuclear pre-mRNA processing in plants: Distinct modes of 3' splice site selection in plants and animals. Molecular and Cellular Biology 8, 2042–51.Google ScholarPubMed
Wu, J. & Manley, J. 1989. Mammalian pre-mRNA branch site selection by U2 snRNP involves base-pairing. Genes & Development 3, 1553–61.CrossRefGoogle ScholarPubMed
Zhuang, Y. & Weiner, A. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes & Development 3, 1545–52.CrossRefGoogle ScholarPubMed