Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T16:26:38.783Z Has data issue: false hasContentIssue false

Radiation-induced enhancement of jasmonic acid levels

Published online by Cambridge University Press:  05 December 2011

H. Sprinz
Affiliation:
Max-Planck-Gesellschaft, Arbeitsgruppe “Zeitaufgelöste Spektroskopie” an der Universität Leipzig, Permoserstraße 15, D-O7050 Leipzig, Germany
C. von Sonntag
Affiliation:
Max-Planck-Institut für Strahlenchemie, Stifstraße 34–36, P.O. Box 101365, D-45413 Mulheim an der Ruhr, Germany
U. Franck
Affiliation:
Sektion Expositionsforschung und Epidemologie, Umweltforschungszentrum Leipzig-Halle, Permostraße 15, 04381 Leipzig, Germany
O. Miersch
Affiliation:
Institut für Pflanzenbiochemie, P.O. Box 250, D-06018 Halle (Saale), Germany
H. Dahlhelm
Affiliation:
Wissenschaftliches Integrationsprogramm: Arbeitsgruppe “Zellbiologie”, Permostraße 15, 04318 Leipzig, Germany
Get access

Extract

In recent years, some experiments with low doses of ionising radiation have been performed, with reproducible results, which indicate a positive stimulus rather than a deletirious effect (Decker & Degner 1983; Wolff 1989).

The aim of our own studies was to establish whether low doses of ionising radiation can influence metabolism by means of a modification of the concentration of a plant hormone, in this particular case jasmonate. The multiple physiological effects caused by the plant bioregulator jasmonate, including response to stress, suggest their essential involvement in central genetic and metabolic processes (Sembdner & Parthier 1993).

Type
Short Communications
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Decker, W. & Degner, W. 1983. Zum Wirkungsmechanismus kleiner Dosen ionisierender Strahlungen auf pflanzliche Objekte und seiner Nutzung in der Landwirtschaft. Radiobiolia. Radiotherapia. 24, 197218.Google Scholar
Forssberg, A. 1964. Effects of small doses of ionizing radiations. In Augenstein, L. G., Mason, R. & Qastler, H. (Eds) Advances in radiation biology, Vol. 1, pp. 117–56. New York, London: Academic Press.Google Scholar
Frankel, E. N. 1988. Hydroperoxidation of unsaturated fatty esters. In Simic, M. G., Taylor, K. A., Ward, J. F. & von Sonntag, C. (Eds) Oxygen radicals in biology and medicine. Proceedings of the 4th International Congress on oxygen radicals, San Diego 1987, pp. 265–82. New York: Plenum Press.CrossRefGoogle Scholar
Gräbner, R., Schneider, G. & Sembdner, G. 1976. Gibberelline XLIII. Mitt. Fraktionierung von Gibberellinen, Gibberellinkonjugaten und anderen Phytohormonen durch DEAE-Sephadex-Chromatographie. Journal of Chromatography 121, 110–15.CrossRefGoogle Scholar
Hamberg, M. & Gardner, H. W. 1992. Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochimica et Biophysica Acta 1165, 118.CrossRefGoogle ScholarPubMed
Miersch, O. 1991. Synthesis of (±)-(10-2H, 11-2H2, 12-2H3)-jasmonic acid. Zeitschrift fur Naturforschung 46B, 1724–9.Google Scholar
Sachs, L. 1992. Angewandte Statistik. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Wolff, S. 1989. Are radiation-induced effects hormetic? Science 245, 575, 621.CrossRefGoogle ScholarPubMed
Sembdner, G. & Parthier, B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annual Review Plant Physiology and Plant Molecular Biology 44, 569–89.CrossRefGoogle Scholar