Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T11:25:02.579Z Has data issue: false hasContentIssue false

The Pressure Sensitivity of Marine Invertebrates—a résumé after 25 years

Published online by Cambridge University Press:  05 December 2011

Elfed Morgan
Affiliation:
Department of Zoology and Comparative Physiology, University of Birmingham.
Get access

Synopsis

Early investigations into the effects of pressure on marine invertebrates were concerned mainly with determining limits of tolerance to extreme pressures, but within the last 25 years it has gradually emerged that many invertebrates are sensitive to quite small changes in pressure, often less than one atmosphere (1000 mb). The responses of most planktonic animals appear to be of a depth regulatory nature but certain littoral organisms show rhythmic changes in activity in response to cyclical pressure changes of tidal amplitude and frequency. The ecological role of such responses is considered.

The parameters of the pressure sense are known only from behavioural studies and offer little information concerning the process of reception. A possible mechanism of transduction based on the compression of a surface film of gas is described.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References To Literature

Baylor, E. R. and Smith, F. E., 1957. Diurnal migration in planktonic crustaceans. (Scheer, B. T., Ed.) Recent Advances in Invertebrate Physiology, 2135. Univ. Oregon Publs.Google Scholar
Battle, H. I., 1932. Rhythmetic sexual maturity and spawning of certain bivalve moluscs. Contr. Can. Biol. Fish., 7, 253276.Google Scholar
Digby, P. S. B., 1961 a. Sensitivity of the shrimp Crangon vulgaris, to hydrostatic pressure. J. Physiol, Lond., 158, 1213 P.Google Scholar
Digby, P. S. B., 1961 b. Mechanism of sensitivity to hydrostatic pressure in the prawn, Palaemonetes varians Leach. Nature, Lond., 191, 366368.Google Scholar
Digby, P. S. B., 1965. Semi-conduction and electrode processes in biological material. I. Crustacea and certain soft-bodied forms. Proc. Roy. Soc. B, 161, 504525.Google Scholar
Digby, P. S. B., 1967. Pressure sensitivity and its mechanism in the shallow marine environment. Symp. Zool. Soc. Lond., 19, 159188.Google Scholar
Enright, J. T., 1961. Pressure Sensitivity of an Amphipod. Science, N.Y., 133, 758760.Google Scholar
Enright, J. T., 1962. Responses of an amphipod to pressure changes. Comp. Biochem. Physiol., 7, 131145.Google Scholar
Enright, J. T., 1963 a. The tidal rhythm of activity of a sandbeach amphipod. Z. Vergl. Physiol., 46, 276313.CrossRefGoogle Scholar
Enright, J. T., 1963 b. Estimates of the compressibility of some marine crustaceans. Limnol. Oceanogr., 8, 382387.Google Scholar
Fage, L., 1932. Pêches planctoniques à. la lumiere, effectuées a Banyuls-sur-Mer et à Concarneau. 11. Pycnogonides. Arch. Zool. Exp. Gén., 76, 105248.Google Scholar
Flügel, H, 1972. Ninety years' high-pressure research. Proc. Roy. Soc. Edinb., 73B, 279285.Google Scholar
Forbes, E. and Godwin-Austen, R., 1859. Natural History of European seas. London: John van Voorst.Google Scholar
Fox, H. Munro, 1924. Lunar periodicity in reproduction. Proc. Roy. Soc, B, 95, 523550.Google Scholar
Hardy, A. C. and Bainbridge, R., 1951. Effect of pressure on the behaviour of decapod larvae (Crustacea). Nature, Lond., 167, 354.CrossRefGoogle ScholarPubMed
Hardy, A. C. and Paton, W. N., 1947. Experiments on the vertical migration of plankton animals. J. Mar. Biol. Ass. U.K., 26, 467526.CrossRefGoogle ScholarPubMed
Hauenschild, C., 1960. Lunar Periodicity. Symp. Quant. Biol. Cold Spring Harbour, 25, 491497.CrossRefGoogle ScholarPubMed
Knight-Jones, E. W. and Morgan, E., 1966. Responses of marine animals to changes in hydrostatic pressure. In Oceanogr. Mar. Biol. Ann. Rev. (Ed. Barnes, H.), 4, 217299. London: George Allen and Unwin Ltd.Google Scholar
Knight-Jones, E. W. and Qasim, S. Z., 1955. Responses of some marine plankton animals to changes in hydrostatic pressure. Nature, Lond., 175, 941.Google Scholar
Knight-Jones, E. W. and Qasim, S. Z., 1967. Responses of Crustacea to changes in hydrostatic pressure. Proc. Symp. Crust. Mar. Biol. Ass. India, 1132–1150.Google Scholar
Korringa, P., 1947. Relations between the moon and periodicity in the breeding of marine animals. Ecol. Monogr., 17, 347381.Google Scholar
Laverack, M. S., 1962. Responses of Cuticular sense organs of the Lobster, Homarus vulgaris (Crustacea)—11. Hair-Fan organs as pressure receptors. Comp. Biochem. Physiol., 6, 137145.Google Scholar
Liao, H. H., 1951. Ph.D. Thesis. Univ. Liverpool.Google Scholar
Lincoln, R. J., 1970. A laboratory investigation into the effects of hydrostatic pressure on the vertical migration of planktonic crustacea. Mar. Biology, 6, 511.Google Scholar
Lincoln, R. J., 1971. Observations of the effects of changes in hydrostatic pressure and illumination on the behaviour of some planktonic crustaceans. J. Exp. Biol., 54, 677688.Google Scholar
Lowenstein, O., 1956. Pressure receptors in the fins of the dogfish. Scylliorhinus canicula. J. Exp. Biol, 33, 417421.Google Scholar
Lowenstein, O. and Sand, A., 1940. The mechanism of the semi-circular canal. A study of the responses of single fibre preparations to angular accelerations and to rotation at constant speed. Proc. Roy. Soc, B, 129, 256275.Google Scholar
Markl, H., 1963. Die Schweresinnesorgane der Insekten. Naturwissenschaften, 50, 559565.Google Scholar
Mayer, A. C., 1908. The annual breeding swarm of the Atlantic Palolo. Publs Carnegie Instn Wash., 102, 107112.Google Scholar
Mohres, F. P., 1940. Untersuchungen tiber die Frage der Wahrnehmung von Druck-unterschieden des Mediums. (Versuche an Bodenfischen.) Z. Vergl. Physiol., 28, 142.CrossRefGoogle Scholar
Moore, H. B., 1955. Variations in temperature and light response within a plankton population. Biol. Bull. Mar. Biol. Lab. Woods Hole, 108, 175181.Google Scholar
Moore, H. B. and Corwin, E. G., 1956. The effects of temperature, illumination and pressure on the vertical distribution of zooplankton. Bull. Mar. Sci. Gulf. Caribb., 6, 273287.Google Scholar
Morgan, E., 1965. The activity rhythm of the Amphipod Corophium volutator (Pallas) and its possible relationship to changes in hydrostatic pressure associated with the tides. J. Anim. Ecol., 34, 731746.CrossRefGoogle Scholar
Morgan, E., 1967. The pressure sense of the Swimming crab Macropipus holsatus (Fabricius), and its possible role in the migration of the species. Crustaceana, 13, 275280.Google Scholar
Morgan, E., 1969 a. The Responses of Nephtys (Polychaeta: Annelida) to changes in hydrostatic pressure. J. Exp. Biol., 50, 501513.Google Scholar
Morgan, E., 1969 b. The possible role of the Supraoesophageal ganglion in the responses of Nephtys (Polychaeta; Annelida) to changes in hydrostatic pressure. J. Exp. Biol., 51, 171179.Google Scholar
Morgan, E., Nelson-Smith, A. and Knight-Jones, E. W., 1964. Responses of Nymphon gracile (Pycnogonida) to pressure cycles of tidal frequency. J. Exp. Biol., 41, 825836.Google Scholar
Moulton, J. M., 1962. Intertidal clustering of an Australian Gasteropod. Bull. Biol. Mar. Biol. Lab. Woods Hole, 123, 170178.Google Scholar
Murray, R. W., 1965. Receptor Mechanisms in the Ampullae of Lorenzini of Elasmobranch Fishes. Symp. Quant. Biol., 30, 233243.Google Scholar
Naylor, E. and Atkinson, R. J. A., 1972. Pressure and the rhythmic behaviour of inshore marine animals. Symp. Soc. Exp. Biol., 26 (in press).Google Scholar
Neumann, D., 1968. Die steurung einer semi luneren Schlipfperiodik mit Hilfe eines kinistlichen Gezeitenzyklus. Z. Vergl. Physiol, 60, 6378.CrossRefGoogle Scholar
Neumann, D., 1971. The temporal programming of development in the intertidal Chironomid Clunio marinus (Diptera: Chironomidae). Can. Ent., 103, 315318.Google Scholar
Qutob, Z., 1962. The swim bladder of Fishes as a pressure receptor. Archs Neerl. Zool, 15, 167.Google Scholar
Regnard, P., 1891. Recherches experimentales sur les conditions physiques de la vie dans les eaux. Paris: Masson.Google Scholar
Rice, A. L., 1961. The responses of certain mysids to changes in hydrostatic pressure. J. Exp. Biol., 38, 391401.CrossRefGoogle Scholar
Rice, A. L., 1962. Responses of Calanus finmarchicus (Gunnerus) to changes of hydrostatic pressure. Nature, Lond., 194, 11891190.Google Scholar
Rice, A. L., 1964. Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. J. Mar. Biol. Ass. U.K., 44, 163176.Google Scholar
Russell, F. S., 1927. The vertical distribution of Plankton in the sea. Biol. Rev., 11, 213262.Google Scholar
Thorpe, W. H. and Crisp, D. J., 1947. Studies on plastron respiration. III. The orientation responses of Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae)) in relation to plastron respiration; together with an account of specialised pressure receptors in aquatic insects. J. Exp. Biol, 24, 310328.Google Scholar
Thomson, C. Wyville, 1873. The Depths of the Sea. London: MacMillan.Google Scholar
Walsby, A. E., 1969. The permeability of blue-green algal gas-vacuole membranes to gas. Proc. Roy. Soc, B, 173, 235255.Google Scholar
Walsby, A. E., 1971. The pressure relationships of gas vacuoles. Proc. Roy. Soc, B, 178, 301326.Google Scholar