Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T11:26:12.117Z Has data issue: false hasContentIssue false

Analysis of hydrocarbons in sediments as indicators of pollution

Published online by Cambridge University Press:  05 December 2011

A. G. Douglas
Affiliation:
Organic Geochemistry Unit, Department of Geology, Drummond Building, The University, Newcastle upon Tyne NE1 7RU
P. B. Hall
Affiliation:
Organic Geochemistry Unit, Department of Geology, Drummond Building, The University, Newcastle upon Tyne NE1 7RU
B. Bowler
Affiliation:
Organic Geochemistry Unit, Department of Geology, Drummond Building, The University, Newcastle upon Tyne NE1 7RU
P. F. V. Williams
Affiliation:
Organic Geochemistry Unit, Department of Geology, Drummond Building, The University, Newcastle upon Tyne NE1 7RU
Get access

Synopsis

After a brief review of some general procedures that have been proposed for the identification of oil spills, details are given of methods that depend on hydrocarbon analyses. Hydrocarbon distributions due to a biological input are compared to those from a petroleum input, utilising hydrocarbon fingerprints obtained by gas chromatographic and combined gas chromatographic-mass spectrometric methods.

It has been shown that most of the sediment samples collected in 1976, 1977 and 1978 from sampling stations in and around Sullom Voe are substantially free from pollution by crude oil; however, three of the samples collected during 1978 do show some signs of pollution. These data will act as a baseline for future studies to be carried out during the operation of the oil terminal.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlard, B. R. 1972. A review of the methods for the identification of persistent hydrocarbon pollutants on seas and beaches. J. Inst. Petrol. 58, 6374.Google Scholar
Ahmadjian, M. and Brown, C. W. 1976. Petroleum identification by laser Raman spectroscopy. Analyt. Chem. 48, 12571259.CrossRefGoogle Scholar
Albaiges, J., Rivera, J., Torradas, J. M. and Cuberes, M. R. 1976. Evaluation des methodes chimiques, spectroscopiques et chromatographaphiques untilisables pour l'identification des polluants petroliers en mer. Revue Inst. Fr. Pétrole 31, 427450.CrossRefGoogle Scholar
Albaiges, J., Borbon, J. and Salagre, P. 1978. Identification of a series of C25-C40 acyclic isoprenoid hydrocarbons in crude oils. Tetrahedron Lett. 6, 595598.CrossRefGoogle Scholar
Albaiges, J. and Albrecht, P. 1979. Fingerprinting marine pollutant hydrocarbons by computerised gas chromatography-mass spectrometry. Int. J. Environ. Analyt. Chem. 6, 171190.CrossRefGoogle Scholar
Allan, J., Bjorøy, M. and Douglas, A. G. 1977. Variation in the content and distribution of high molecular weight hydrocarbons in a series of coal macerals of different rank. In Advances in Organic Geochemistry, 1975, ed. Campos, R. and Goni, J., pp. 633654. Madrid: Enadimsa.Google Scholar
Bentz, A. P. 1976. Oil-spill identification. Analyt. Chem. 48, 454A472A.CrossRefGoogle Scholar
Blumer, M. 1957. Removal of elemental sulphur from hydrocarbon fractions. Analyt. Chem. 29, 10391041.CrossRefGoogle Scholar
Blumer, M., Mullin, M. M. and Thomas, D. W. 1964. Pristane in the marine environment. Helgoländer Wiss. Meeresunters. 10, 187201.CrossRefGoogle Scholar
Blumer, M. and Snyder, W. D. 1965. Isoprenoid hydrocarbons in recent sediments: presence of pristane and probably absence of phytane. Science N.Y. 150, 1588.CrossRefGoogle ScholarPubMed
Blumer, M., Guillard, R. R. L. and Chase, T. 1971. Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183189.CrossRefGoogle Scholar
Blumer, M. and Sass, J. 1972. Indigenous and petroleum-derived hydrocarbons in a polluted sediment. Mar. Pollut. Bull. 3, 9294.CrossRefGoogle Scholar
Bray, E. E. and Evans, E. D. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 215.CrossRefGoogle Scholar
Brown, C. W. 1975. Identifying oil in the environment by infrared spectroscopy. Am. Chem. Soc., Div. Environ. Chem. 15, 191193.Google Scholar
Brown, C. W. and Lynch, P. F. 1976. Infrared analysis of weathered petroleum using vacuum techniques. Analyt. Chem. 48, 191195.CrossRefGoogle Scholar
Brunnock, J. V., Duckworth, D. F. and Stephens, G. G. 1968. Analysis of beach pollutants. J. Inst. Petrol. 54, 310325.Google Scholar
Clark, R. C. 1966. Occurrence of normal paraffin hydrocarbons in nature. Unpublished manuscript. Woods Hole Oceanogr. Instn Tech. Rep. Ref. No. 66–34, 56p.Google Scholar
Clark, R. C. and Blumer, M. 1967. Distribution of n-paraffins in marine organisms and sediment. Limnol. Oceanogr. 12, 7987.CrossRefGoogle Scholar
Clark, H. A. and Jurs, P. C. 1975. Qualitative determination of petroleum sample types from gas chromatograms using pattern recognition techniques. Analyt. Chem. 47, 374378.CrossRefGoogle Scholar
Clark, R. C. and Brown, D. W. 1977. Petroleum: Properties and analyses in biotic and abiotic systems. In Effects of petroleum on arctic and subarctic marine environments and organisms, ed. Malins, D. C. pp. 189. London: Academic Press.Google Scholar
Craib, J. S. 1965. A sampler for taking short undisturbed marine cores. J. Cons. Perm. Int. Explor. Mer. 30, 3439.CrossRefGoogle Scholar
Dastillung, M. and Albrecht, P. 1976. Molecular test for oil pollution in surface sediments. Mar. Pollut. Bull. l, 1315.CrossRefGoogle Scholar
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. and Eglinton, G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature Lond. 272, 216222.CrossRefGoogle Scholar
Douglas, A. G. and Eglinton, G. 1966. The distribution of alkanes. In Comparative Phytochemistry, ed. Swain, T., pp. 5777. London: Academic.Google Scholar
Douglas, A. G., Stanley, S. O. and Pearson, T. H. 1977. Hydrocarbon analyses of Sullom Voe. Scottish Marine Biol. Ass. (Preliminary internal report).Google Scholar
Duewer, D. L., Kowalski, B. R. and Schatzki, T. F. 1975. Source identification of oil spills by pattern recognition analysis of natural element composition. Analyt. Chem. 47, 15731583.CrossRefGoogle Scholar
Eglinton, G., Hamilton, R. J., Raphael, R. A. and Gonzalez, A. G. 1962. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Nature Lond. 193, 739742.CrossRefGoogle ScholarPubMed
Eglinton, G., and Hamilton, R. J., 1963. The distribution of alkanes. In Chemical Plant Taxonomy, ed. Swain, T., pp. 187217. London: Academic.CrossRefGoogle Scholar
Ensminger, A., van Dorsselaer, A., Spyckerelle, C., Albrecht, P. and Ourisson, G. 1974. Pentacyclic triterpanes of the hopane type as ubiquitous geochemical markers: origin and significance. In Advances in Organic Geochemistry, 1973, ed. Tissot, B. and Bienner, F., pp. 254260. Paris: Editions Technip.Google Scholar
Farrington, J. W., Teal, J. M. and Parker, P. L. 1976. Petroleum hydrocarbons. In Strategies for Marine Pollution Monitoring, ed. Goldberg, E. D., pp. 334. New York: Wiley-Interscience.Google Scholar
Gelpi, E., Schneider, H., Mann, J. and Oro, J. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9, 603612.CrossRefGoogle Scholar
Grob, K. and Grob, G. 1976. A new generally applicable procedure for the preparation of glass capillary columns. J. Chromat. 125, 471485.CrossRefGoogle Scholar
Grob, K. Jr, Grob, G. and Grob, K. 1978. Comprehensive standardisation quality test for glass capillary columns. J. Chromat. 156, 120.CrossRefGoogle Scholar
Gruenfeld, M. 1973. Identification of oil pollutants: A review of some recent methods. In Proc. Jt Conf. Prev. and Control of Oil Spills, pp. 179194. Washington: American Petroleum Institute.Google Scholar
Gruenfeld, M. and Frank, U. 1977. A review of some commonly used parameters for the determination of oil pollution. In Proc. Jt. Conf. Prev. and Control of Oil Spills, pp. 487491. Washington: American Petroleum Institute.Google Scholar
Han, J. and Calvin, M. 1969. Occurrence of C22-C25 isoprenoids in Bell Creek crude oil. Geochim. Cosmochim. Acta 33, 733742.CrossRefGoogle Scholar
Hanson, W. E. 1960. Origin of Petroleum. In Chemical Technology of Petroleum, ed. Gruse, W. A. and Stevens, D. R., pp. 228254. New York: McGraw Hill.Google Scholar
Hargrave, B. T. and Phillips, G. A. 1974. Estimates of oil in aquatic sediments by fluorescence spectroscopy. Environ. Pollut. 8, 193215.CrossRefGoogle Scholar
Haug, P. and Curry, D. J. 1974. Isoprenoids in a Costa Rican seep oil. Geochim. Cosmochim. Acta 38, 601610.CrossRefGoogle Scholar
Hertz, H. S., May, W. E., Chesler, S. N. and Gump, B. H. 1976. Petroleum analysis: methodology for quantitative and qualitative assessment of oil spill. Environ. Sci. Technol. 10, 900903.CrossRefGoogle Scholar
Institute of Petroleum, 1978. The characterisation of pollutants of petroleum origin on seas and beaches by gas chromatography. In Standards for petroleums and its products, Part I. Method for analysis and testing, 2,1.P. 296/73.Google Scholar
John, P. and Soutar, I. 1976. Identification of crude oils by synchronous excitation spectrofluorimetry. Analyt. Chem. 48, 520524.CrossRefGoogle Scholar
Kimble, B. J., Maxwell, J. R., Philp, R. P., Eglinton, G., Albrecht, P., Ensminger, A., Arpino, P. and Ourisson, G. 1974. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale. Geochim. Cosmochim. Acta, 38 11651181.CrossRefGoogle Scholar
Koeser, H. J. K. and Oelert, H. H. 1976. New applications of computer-aided infrared spectroscopy in analysis. Z. Analyt. Chem. 281, 916.Google Scholar
Lukens, H. R. 1975. Characterising oil spills by neutron activation analysis. Prog. Nucl. Energy, Analyt. Chem. 12, 110.Google Scholar
Mattson, J. S., Mattson, C. S., Spencer, M. J. and Spencer, F. W. 1977a. Classification of petroleum pollutants by linear discrimination function analysis of infrared spectral patterns. Analyt. Chem. 49, 500502.CrossRefGoogle ScholarPubMed
Mattson, J. S., Mattson, C. S., Spencer, M. J. and Starks, S. A. 1977b. Multivariate statistical approach to the fingerprinting of oils by infrared spectrometry. Analyt. Chem. 49, 297302.CrossRefGoogle Scholar
Moldowan, J. M. and Seifert, W. K. 1979. Head-to-head linked isoprenoid hydrocarbons in petroleum. Science N.Y. 13, 169170.CrossRefGoogle Scholar
Mulheirn, L. J. and Ryback, G. 1977. Isolation and structure analysis of steranes from geological sources. In Advances in Organic Geochemistry, ed. Campos, R. and Goni, J., pp. 173192. Madrid: Enadimsa.Google Scholar
Murray, J., Thomson, A. B., Staff, A., Hardy, R., Whittle, K. J. and Mackie, P. R. 1977. On the origin of hydrocarbons in marine organisms. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 171, 8490.Google Scholar
Neff, J. M. and Anderson, J. W. 1975. An ultraviolet spectrophotometric method for the determination of naphthalene and alkylnaphthalenes in the tissues of oil-contaminated marine animals. Bull. Environ. Contam. Toxicol. 14, 122128.CrossRefGoogle ScholarPubMed
Ourisson, G., Albrecht, P. and Rohmer, M. 1979. Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709729.CrossRefGoogle Scholar
Ramsdale, S. J. and Wilkinson, R. E. 1968. Identification of petroleum sources of beach pollution by gasliquid chromatography. J. Inst. Petrol. 54, 326331.Google Scholar
Rasmussen, D. V. 1976. Characterisation of oil spills by capillary column gas chromatography. Analyt. Chem. 48, 15621566.CrossRefGoogle Scholar
Reed, W. E. and Kaplan, F. R. 1977. The chemistry of marine petroleum seeps. J. Geochem. Explor. 7, 255293.CrossRefGoogle Scholar
Rubinstein, I., Sieskind, O., and Albrecht, P., 1975. Rearranged sterenes in a shale: occurrence and simulated formation. J. Chem. Soc. Perkin Trans. 2, 18331836.CrossRefGoogle Scholar
Rubinstein, I., Strausz, O. P., Crawford, R. J., and Westlake, D. W. S., 1977. The origin of the oil and sand bitumens of Alberta: a chemical and microbiological simulation study. Geochim. Cosmochim. Acta 41, 13411353.CrossRefGoogle Scholar
Saner, W. A., and Fitzgerald, G. E., 1976. Thin–layer chromatographic technique for identification of waterborne petroleum oils. Environ. Sci. Technol. 10, 893897.CrossRefGoogle Scholar
Saner, W. A., Fitzgerald, G. E., and Welsh, J. P., 1976. Liquid chromatographic identification of oils by separation of the methanol extractable fraction. Analyt. Chem. 48, 17471754.CrossRefGoogle Scholar
Schomburg, G., Husmann, H., and Weeke, F., 1974. Preparation, performance and special applications of glass capillary columns. J. Chromat. 99, 6379.CrossRefGoogle Scholar
Seifert, W. K., and Moldowan, J. M., 1979. The effect of biodegradation on steranes and terpanes in crude oils. Geochim. Cosmochim. Acta, 111126.CrossRefGoogle Scholar
Shylyakhov, A. F., Koreshkova, R. I., and Telkova, M. S., 1975. Gas chromatography of isoprenoid alkanes. J. Chromat. 104, 337349.CrossRefGoogle Scholar
Simoneit, B. R. T., Chester, R., and Eglinton, G., 1977. Biogenic lipids in particulates from the lower atmosphere over the eastern Atlantic. Nature Lond. 267, 682684.CrossRefGoogle Scholar
Spyckerelle, C., Arpino, P., and Ourisson, G., 1972. Identification de series de composes isoprenoids isolees de source geologique –I. Hydrocarbures acycliques de C21 a C25 (sesterterpanes). Tetrahedron 28, 57035713.CrossRefGoogle Scholar
Stanley, S. O., Pearson, T. H., Comely, C. A., and Douglas, A. G., 1977. Sullom Voe survey (internal report).Google Scholar
Trussel, F. C., 1977. Petroleum: Crude oils. Analyt. Chem. 49, 231R286R.CrossRefGoogle Scholar
Trussel, F. C., 1979. Petroleum: Crude oils. Analyt. Chem. 51, 211R256R.CrossRefGoogle Scholar
Van Dorsselaer, A., Ensminger, A., Spyckerelle, C., Dastillung, M., Sieskind, O., Arpino, P., Albrecht, P., Ourisson, G., Brooks, P. W., Gaskell, S. J., Kimble, B. J., Philip, R. P., Maxwell, J. R., and Eglinton, G., 1974. Degraded and extended hopane derivatives (C27-C35) as ubiquitous geochemical markers. Tetrahedron Lett. 14, 13491352.CrossRefGoogle Scholar
Van Dorsselaer, A., 1975. Triterpenes de sediments. Ph.D. Thesis, Universitè Louis Pasteur de Strasbourg.Google Scholar
Van Dorsselaer, A., Albrecht, P., and Ourisson, G., 1977. Identification of novel (17αH)-hopanes in shales, coals, lignites, sediments and petroleum. Bull. Soc. Chim. Fr. 165170.Google Scholar
Van de Meent, D., Maters, W. L., de Leeuw, J. W., and Schenck, P. A., 1977. Formation of artifacts in sediments upon freeze-drying. Organic Geochem. 1, 79.CrossRefGoogle Scholar
Wilson, R. D., 1973. Estimate of annual input of petroleum to the marine environment from natural marine seepage. In Background Papers for Workshop on Inputs, Fates and Effects of Petroleum in the Marine Environment. NTIS, 1, 5996.Google Scholar
Wilson, R. D., Monaghan, P. H., Osanik, A., Price, L. C., and Rogers, M. A., 1974. Natural marine oil seepage. Science N. Y. 184, 857865.CrossRefGoogle ScholarPubMed
Wilson, C. A., Ferrero, E. P., and Coleman, H. J., 1975. Crude oil spills research: an investigation and evaluation of analytical techniques. Am. Chem. Soc., Div. Petrol. Chem. 20, 613634.Google Scholar
Youngblood, W. W., and Blumer, M., 1973. Alkanes and alkenes in marine benthic algae. Mar. Biol. 21, 163172.CrossRefGoogle Scholar
Note added in proof. The following book contains a number of chapters on the analysis of pollutant petroleum hydrocarbons:Google Scholar
Petrakis, L., and Weiss, F. T., 1980. Petroleum in the Marine Environment. Adv. in Chem. Series 185, Washington, D.C.: American Chem. Soc.Google Scholar