Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-21T05:21:37.521Z Has data issue: false hasContentIssue false

The relationship between starch content in rhizomes of Phragmites australis (Cav.) Trin. ex Steud. and trophic conditions of habitat

Published online by Cambridge University Press:  05 December 2011

P. Kubin
Affiliation:
Department of Plant Physiology, Charles University Prague, Viničná 5, CZ-12844 Praha 2, Czech Republic
A. Melzer
Affiliation:
Institute of Botany and Microbiology, Technical University Munich, Arcisstraße 21, D-80333 München 2, Germany
H. Čižkova
Affiliation:
Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 145, CZ-37982 Trebon, Czech Republic
Get access

Synopsis

The hypothesis of reed decline being a consequence of eutrophication has been proved. Rhizomes of P. australis from two habitats differing in nutrient availability were collected during one year. In the nutrient-poor habitat, less aboveground biomass and greater starch reserves were formed in comparison with the nutrient-rich one. In the stand with a high nutrient availability, a decrease in starch content was observed in horizontal rhizomes during autumn.

Type
Short Communications
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J., Armstrong, W. & Beckett, P. M. 1992. Pragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist 120, 197207.CrossRefGoogle Scholar
Bornkamm, R., Raghi-Atri, F. & Koch, M. 1980. Einfluß der Gewässer-eutrophierung auf Phragmites australis (Cav.) Trin. ex Steud. Garten und Landschaft J. 1, 1519.Google Scholar
Böhm, W. 1979. Methods of studying root systems. Ecological Studies 3, Berlin: Springer Verlag.Google Scholar
Brändle, R. 1985. Kohlehydratgehalte und Vitalität isolierter Rhizome von Phragmites australis, Schoenoplectus lacustris and Typha latifolia nach mehrwöchigem O2-Mangelstreß. Flora 177, 317–21.CrossRefGoogle Scholar
Chapin, F. S., Shaver, G. R. & Kedrowski, R. A. 1986. Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology 74, 167–95.Google Scholar
Chapin, F. S., Schulze, E.-D. & Mooney, H. A. 1990. The ecology and economics of storage in plants. Annual Reviews of Ecology and Systematics, 21, 423–47.CrossRefGoogle Scholar
Čižková-Končalová, H., Květ, J. & Thompson, K. 1992. Carbon starvation: a key to reed decline in eutrophic lakes. Aquatic Botany 43, 105–13.Google Scholar
Čižková-Končalová, H. & Bauer, V. 1993. Response of a wetland sedge, Carex gracillis, to hypereutrophic conditions: interactions between anaerobiosis and high nitrogen availability. In Ostendrop, W. & Krumscheid-Plankert, P. (Eds) Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa, pp. 2332. Stuttgart: Gustav Fischer Verlag.Google Scholar
Dykyjová, D. 1973. Comparative biometry of Phragmites communis ecotypes and its significance to investigation of reed stands productivity. In: Ecosystem study on wetland biome in Czechoslovakia pp. 105109, IBP/PT-PP Report No. 3, Trebon.Google Scholar
Dykyjová, D. & Hradecká, D. 1976. Production ecology of Phragmites communis. 1. Relations of two ecotypes to the microclimate and nutrient conditions of habitat. Folia Geobot. Phytotax. (Praha) 11 2361.Google Scholar
Forsberg, C. 1984. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 176/177, 263–77.CrossRefGoogle Scholar
Hurlimann, H. 1951. Zur Lebensgeschichte des Schilfs an den Ufern der Schweizer Seen. Beitr. Geobot. Landesaufn Schweiz 30, 1232.Google Scholar
Kauppi, P., Selkäinaho, J. & Puttonen, P. 1983. A method for estimating above-ground biomass in Phragmites stands. Annales Botanici Fennici 20, 51–5.Google Scholar
Krumscheid-Plankert, P. 1992. Experimentelle Untersuchungen zur Nährstoffabhängingkeit des Schilfrohrs (Phragmites australis (Cav.) Trin. ex Steud.): Implikationen für Röhricht-Sanierungsstrategien. Konstanzer Dissertationen. Hartung-Gorre Verlag, Konstanz.Google Scholar
Kühl, H. & Kohl, J.-G. 1992. Nitrogen accumulation, productivity and stability of reed stands (Phragmites australis (Cav.) Trin. ex Steud.) at different lakes and sites of the lake districts of Uckermark and Mark Brandenburg (Germany). Internationale Revue der Gesamten Hydrobiologie 77/1, 85107.Google Scholar
Lang, G. 1968. Vegetationsänderungen am Bodenseeufer in den letzten hundert Jahren. Schr. Ver. Gesch. Bodennsees u. Seiner Umgebung 86, 295319.Google Scholar
Marchner, H. 1986. Mineral nutrition of higher plants. London: Academic Press. 1986.Google Scholar
McCready, R. M., Guggolz, J., Silvera, V. & Owens, H. S. 1950. Determination of starch and amylose in vegetables. Application to peas. Analytical Chemistry 22, 1156–8.CrossRefGoogle Scholar
Ondok, J. P. 1968. Measurement of leaf area in Phragmites communis Trin. Photosynlhetica 2/1 2530.Google Scholar
Ostendorp, W. 1989. ‘Die-back’ of reeds in Europe – a critical review of literature. Aquatic Botany 35, 526.CrossRefGoogle Scholar
Raeder, U. 1990. Vergleichende Untersuchungen der Phytoplanktonsukzession in 15 Seen des Osterseegebietes. Dissertation TU München 1102.Google Scholar
Raghi-Atri, F. & Bornkamm, R. 1979. Wachstum und chemische Zusammensetzung von Schilf (Phragmites australis) in Abhängigkeit von der Gewässereutrophierung. Archives of Hydrobiology 85/2, 192228.Google Scholar
Reddy, K. R., Patrick, W. H. Jr & Linden, C. W. 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography, 34, 1004–13.CrossRefGoogle Scholar
Schwoerbel, J. 1993. Einführung in die Limnologie. Stuttgart: Gustav Fischer Verlag.Google Scholar
Ulrich, A. 1955. Influence of night temperature and nitrogen nutrition on the growth, sucrose accumulation and leaf minerals of sugar beet plants. Plant Physiology 30, 250–7.CrossRefGoogle ScholarPubMed
Ulrich, K. E. & Burton, T. M. 1985. The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns of Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany 21 5362.CrossRefGoogle Scholar
Veit, E. 1993. Veränderung der Bestandsdichte des Schilfes (Phragmites australis) am Starnberger See und Erfassung des Istzutandes durch biometrische Messungen an ausgewählten Beständen. Diplomarbeit TU München.Google Scholar
Weisner, S. E. B. & Granéli, W. 1989. Influence of substrate conditions on the growth of Phragmites australis after a reduction in oxygen transport to below-ground parts. Aquatic Botany 35, 7180.CrossRefGoogle Scholar
Wheeler, B. D., Shaw, S. C. & Cook, R. E. D. 1992. Phytometric assessment of the fertility of undrained rich-fen soils. Journal of Applied Ecology 29, 466–75.CrossRefGoogle Scholar
Yoshida, T. 1982. On the summer peak of nutrient concentrations in lake water. Hydrobiologia 92, 571–8.Google Scholar