Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T01:14:04.442Z Has data issue: false hasContentIssue false

Development of mass blooms of photosynthetic bacteria on sheltered beaches in Scapa Flow, Orkney Islands

Published online by Cambridge University Press:  05 December 2011

R. A. Herbert
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN
Get access

Synopsis

Mass blooms of purple sulphur bacteria belonging to the genera Thiocapsa and Chromatium (> 108 viable cells/g dry wt sediment) develop in localised areas at the sand/air interface on a number of sheltered beaches in Scapa Flow each summer. These anaerobic bacteria grow phototrophically using H2S as e donor and develop in association with other groups of phototrophic and heterotrophic bacteria. Oxygen consumption by the heterotrophs is greater than O2 production by the algae and diffusion from the surface and this rapidly leads to anaerobic conditions in the sub-surface sediments (0–10 mm depth). Under these conditions, significant populations of sulphate reducing bacteria develop (circa 105 viable cells/g dry wt sediment) and reduce SO2−/4 to S2− during the anaerobic oxidation of low molecular weight organic substrates. Sulphide generated in this process is used as the e donor in photosynthesis by the purple sulphur bacteria and in turn is re-oxidised to SO2−/4. Sulphate reduction is dependent upon the availability of oxidisable low molecular organic substrates which are produced, as metabolic end-products, during the microbial decomposition of algal detritus. Blooms of Thiocapsa and Chromatium spp. were most pronounced on beaches such as Scapa, Waulkmill and Swanbister, which in localised areas, have high total organic carbon contents (5–12% w/w). The factors regulating the development of these localised mass developments of anaerobic phototrophic bacteria in apparently aerobic environments are discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Public Health Association, 1974. Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.Google Scholar
Anagnostidis, K. and Schwabe, G. H. 1966. Über artenreiche Bestände von Cyanophyten und Bacteriophyten in einem Farbstreifensandwatt sowie über das Auftreten von Gomontiella—deformiester Oscillatoria—Trichome. Nova Hedniga 9, 417441.Google Scholar
Billen, G. 1982. Modelling the processes of organic matter degradation and nutrient recycling in sedimentary systems. In Sediment Microbiology, Special Publications of the Society for General Microbiology, ed. Nedwell, D.B. and Brown, C.M., pp. 1552. London: Academic Press.Google Scholar
Chen, K. Y. and Morris, J. G. 1972. Kinetics of oxidation of sulphate by O2. Environ. Sci. Technol. 3, 838843.Google Scholar
Cohen, Y. B., Padan, E. and Shilo, M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J. Bad. 123, 855861.Google Scholar
Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities, with special reference to the ciliated Protozoa. Ophelia 6, 1182.CrossRefGoogle Scholar
Fenchel, T. and Straarup, B. J. 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22, 172182.Google Scholar
Garlick, S., Oren, A. and Padan, E. 1977. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bad. 129, 623629.Google ScholarPubMed
Hansen, M. H., Ingvorsen, K. and Jørgensen, B. B. 1978. Mechanisms of hydrogen sulphide release from coastal marine sediments to the atmosphere. Limnol. Oceanogr. 23, 6876.Google Scholar
Hoffman, C. 1949. Über die Durchlassigkeit dünner Sandschichter für Licht. Planta 37, 4856.Google Scholar
Jørgensen, B. B. 1977. The sulphur cycle of a coastal marine sediment. Limnol. Oceanogr. 22, 814832.Google Scholar
Jørgensen, B. B. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. In Sulphur Bacteria, ed. Postgate, J. R. and Kelly, D. P., pp 543561. London: Royal Society.Google Scholar
Jørgensen, B. B., Kuenen, J. G. and Cohen, Y. 1979. Microbial transformation of sulphur compounds in a stratified lake. Limnol. Oceanogr. 24, 799822.Google Scholar
Laanbroek, H. J. and Pfennig, N. 1981. Oxidation of short-chain fatty acids by sulphate reducing bacteria in freshwater and marine sediments. Arch. Microbiol. 128, 330335.Google Scholar
Macfarlane, G. T. and Herbert, R. A. 1984. Dissimilatory nitrate reduction and nitrification in estuarine sediments. J. Gen. Microbiol. (accepted for publication).Google Scholar
Mechalas, B. J. 1974. Pathways and environmental requirements for biogenic gas production in the oceans. In Natural Gases in Marine Sediments, ed. Kaplan, I. R., pp 1225, New York: Plenum Press.Google Scholar
Nedwell, D. B. 1982. The cycling of sulphur compounds in marine and freshwater environments. In Sediment Microbiology, Special Publications of the Society for General Microbiology, ed. Nedwell, D. B. and Brown, C. M. pp. 73106. London: Academic Press.Google Scholar
Oremland, R. S. and Taylor, B. F. 1978. Sulphate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209214.Google Scholar
Pfennig, N. 1965. Anreicherungskulturen für röte und grune Schwefelbakterien. Zentbl. Bakt. Parasitkde Abt. 1, 179189.Google Scholar
Postgate, J.R. 1979. The Sulphate Reducing Bacteria. Cambridge: Cambridge University Press.Google Scholar
Rippka, R. R., Dervelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 161.Google Scholar
Schultz, E. 1936. Das Farbstreifensandwatt und seine Fauna, eine ökolgische brozönorisce Unterrsuchung an der Nordsee. Kieler Meeresforsch. 1, 359378.Google Scholar
Senior, E., Lindstrom, E. B., Banat, I. M. and Nedwell, D. B. 1982. Sulphate reduction and methanogenesis in the sediment of a salt march on the east coast of the United Kingdom. Appl. Environ. Microbiol. 43, 987996.CrossRefGoogle Scholar
Sorokin, Y. I. 1962. Experimental investigation of bacterial sulphate reduction in the Black Sea using 35S. Microbiology 31, 329335.Google Scholar
Trüper, H. G. and Pfennig, N. 1981. Characterisation and identification of the anoxygenic phototrophic bacteria. In The Prokaryotes, ed. Starr, M. P., Stolp, H., Trüper, H. G., Balows, A. and Schlegel, H. G., pp. 229312. Berlin: Springer.Google Scholar
Widdel, F. 1980. Anaerober Abbau von Fettsäuren und Benzosaure durch neu isolierte Arlen Sulfatreduzierender Bakterien. Ph.D. thesis, University of Göttingen, West Germany.Google Scholar