Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T20:54:23.210Z Has data issue: false hasContentIssue false

Coastal sand dunes as biological systems

Published online by Cambridge University Press:  05 December 2011

A. J. Willis
Affiliation:
Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, U.K.
Get access

Synopsis

With the gradation of intensities of environmental factors from the strand-line to stable inland areas, coastal dunes show many ecological phenomena especially clearly. These are reviewed broadly, with some emphasis on topics on which important advances are being made. The nutrient status of dune soil and changes with time are shown with reference to several dune systems. Changes in major nutrients are given for Braunton Burrows, north Devon, where the influence of nitrogen fixation by Lotus corniculatus is illustrated. The effects of sand burial on plants are considered, and details given of the root systems of vigorous and relict marram; factors which may affect its decline in vigour are reviewed. Also discussed is the likely significance of nematodes in the decline of Hippophaë rhamnoides. Reasons for the richness of the dune flora are considered and also some autecological studies. At the physiological level, reference is made to the water relations of plants and at the biochemical level to the occurrence and possible ecological importance of stress metabolites. Life strategies, phenology, survivorship, competition and the population ecology of dune plants are reviewed and also the interaction of ragwort (Senecio jacobaea) and cinnabar moth (Tyria jacobaeae). The population genetics of dune plants is illustrated by reference to Festuca rubra and Ammophila arenaria and of animals to Cepaea nemoralis.

The abundance and ecological relationships of the invertebrate fauna are exemplified by surveys at Spurn Point, extensive investigations on spiders and the influence of marram on arthropod communities. The ecology of the natterjack load is considered in relation to conservation and the effects of large animal grazers in relation to the diversity of vegetation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, C. & Taylor, K. 1979. Some factors affecting the growth of two populations of Festuca rubra var. arenaria on the dunes of Blakeney Point, Norfolk. In Ecological Processes in Coastal Environments, eds Jefferies, R. L. & Davy, A. J., pp. 129143. Oxford: Blackwell Scientific Publications.Google Scholar
Beckel, D. K. B. 1956. Cortical disintegration in the roots of Bouteloua gracilis (H. B. K.) Lag. New Phytologist 55, 183190.CrossRefGoogle Scholar
Beebee, T. J. C. 1977. Environmental change as a cause of Natterjack Toad (Bufo calamitaXS) declines in Britain. Biological Conservation 11, 87102.CrossRefGoogle Scholar
Birse, E. M., Landsberg, S. Y. & Gimingham, C. H. 1957. The effects of burial by sand on dune mosses. Transactions of the British Bryological Society 3, 285301.CrossRefGoogle Scholar
Boorman, L. A. 1989. The influence of grazing on British sand dunes. In Perspectives in Coastal Dune Management, eds Meulen, F. van der, Jungerius, P. D. & Visser, J., pp. 121124. The Hague: SPB Academic Publishing.Google Scholar
Boorman, L. A. 1989. The grazing of British sand dune vegetation. Proceedings of the Royal Society of Edinburgh 96B, 7588.Google Scholar
Bradshaw, A. D. 1958. Natural hybridization of Agrostis tenuis Sibth. and A. stolonifera L. New Phytologist 57, 6684.CrossRefGoogle Scholar
Brinkman, H., Loof, P. A. A. & Barbez, D. 1987. Longidorus dunensis n. sp. and L. kuiperi n. sp. from the sand dune coastal region of the Netherlands (Nematoda: Longidoridae). Revue Nématologique 10, 299308.Google Scholar
Buchenau, F. 1889. Über die Vegetationsverhältnisse des “Helms” (Psamma arenaria Röm. et Schultes) und der verwandten Dünengräser. Abhandlungen vom Naturwissenschaftlichen Verein zu Bremen 10, 397412.Google Scholar
Cain, A. J. 1968. Studies on Cepaea. V. Sand-dune populations of Cepaea nemoralis (L.). Philosophicali Transactions of the Royal Society of London B253, 499517.Google Scholar
Clapham, A. R., Tutin, T. G. & Moore, D. M. 1987. Flora of the British Isles, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
Clarke, B. & Murray, J. 1962a. Changes of gene-frequency in Cepaea nemoralis (L.). Heredity 17, 445465.CrossRefGoogle Scholar
Clarke, B. & Murray, J. 1962b. Changes of gene-frequency in Cepaea nemoralis (L.); the estimation of selective values. Heredity 17, 467476.CrossRefGoogle Scholar
Cowles, H. C. 1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan, Part 1. Geographical relations of the dune floras. Botanical Gazette 27, 95117.CrossRefGoogle Scholar
Crawford, R. M. M. & Tyler, P. D. 1969. Organic acid metabolism in relation to flooding tolerance in roots. Journal of Ecology 57, 235244.CrossRefGoogle Scholar
Crocker, R. L. & Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. Journal of Ecology 43, 427448.CrossRefGoogle Scholar
Davies, J., Briarty, L. G. & Rieley, J. O. 1973. Observations on the swollen lateral roots of the Cyperaceae. New Phytologist 72, 167174.CrossRefGoogle Scholar
Dempster, J. P. & Lakhani, K. H. 1979. A population model for cinnabar moth and its food plant, ragwort. Journal of Animal Ecology 48, 143163.CrossRefGoogle Scholar
Disraeli, D. J. 1984. The effect of sand deposits on the growth and morphology of Ammophila breviligulata. Journal of Ecology 72, 145154.CrossRefGoogle Scholar
Duffey, E. 1968. An ecological analysis of the spider fauna of sand dunes. Journal of Animal Ecology 37, 641674.CrossRefGoogle Scholar
Eldred, R. A. & Maun, M. A. 1982. A multivariate approach to the problem of decline in vigour of Ammophila. Canadian Journal of Botany 60, 13711380.CrossRefGoogle Scholar
Freijsen, A. H. J. 1967. A Field Study on the Ecology of Centaurium vulgare Rafn. Tilburg: H. Gianotten.Google Scholar
Garson, P. J. 1985. Rabbit grazing and the dune slack flora of Holy Island, Lindisfarne N.N.R. In Sand Dunes and their Management, ed. Doody, P., Focus on Nature Conservation 13, pp. 205216. Peterborough: Nature Conservancy Council.Google Scholar
Gibson, D. J. 1988a. The relationship of sheep grazing and soil heterogeneity to plant spatial patterns in dune grassland. Journal of Ecology 76, 233252.CrossRefGoogle Scholar
Gibson, D. J. 1988b. The maintenance of plant and soil heterogeneity in dune grassland. Journal of Ecology 76, 497508.CrossRefGoogle Scholar
Gimingham, C. H. 1964. Maritime and sub-maritime communities. In The Vegetation of Scotland, ed. Burnett, J. H., pp. 67142. Edinburgh: Oliver and Boyd.Google Scholar
Gorham, E. 1958. Soluble salts in dune sands from Blakeney Point in Norfolk. Journal of Ecology 46, 373379.CrossRefGoogle Scholar
Gray, A. J. 1985. Adaptation in perennial coastal plants – with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria. Vegetalio 61, 179188.CrossRefGoogle Scholar
Greig-Smith, P., Gemmell, A. R. & Gimingham, C. H. 1947. Tussock formation in Ammophila arenaria (L.) Link. New Phytologist 46, 262268.CrossRefGoogle Scholar
Hincks, W. D. 1951. The Entomology of Spurn Peninsula, 111. General entomology of the areas. 1. Marram grass areas. The Naturalist, Hull 1951, No. 837, 8586.Google Scholar
Hope-Simpson, J. F. & Jefferies, R. L. 1966. Observations relating to vigour and debility in marram grass (Ammophila arenaria (L.) Link). Journal of Ecology 54, 271274.CrossRefGoogle Scholar
Huiskes, A. H. L. 1977. The natural establishment of Ammophila arenaria from seed. Oikos 29, 133136.CrossRefGoogle Scholar
Huiskes, A. H. L. 1979. Biological Flora of the British Isles: Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.; Calamagrostis arenaria (L.) Roth). Journal of Ecology 67, 363382.CrossRefGoogle Scholar
James, P. A. & Wharfe, A. J. 1989. Timescales of soil development in a coastal sand dune system, Ainsdale, north-west England. In Perspectives in Coastal Dune Management, eds Meulen, F. van der, Jungerius, P. D. & Visser, J., pp. 287295. The Hague: SPB Academic Publishing.Google Scholar
Jones, R. 1972a. Comparative studies of plant growth and distribution in relation to waterlogging. V. The uptake of iron and manganese by dune and dune slack plants. Journal of Ecology 60, 131139.CrossRefGoogle Scholar
Jones, R. 1972b. Ibid. VI. The effect of manganese on the growth of dune and dune slack plants. Journal of Ecology 60, 141145.Google Scholar
Jong, T. J. de & Klinkhamer, P. G. L. 1988a. Population ecology of the biennials Cirsium vulgare and Cynoglossum officinale in a coastal sand-dune area. Journal of Ecology 76, 366382.CrossRefGoogle Scholar
Jong, T. J. de & Klinkhamer, P. G. L. 1988b. Seedling establishment of the biennials Cirsium vulgare and Cynoglossum officinale in a sand-dune area: the importance of water for differential survival and growth. Journal of Ecology 76, 393402.CrossRefGoogle Scholar
Laing, C. C. 1967. The ecology of Ammophila breviligulata. II. Genetic change as a factor in population decline on stable dunes. American Midland Naturalist 77, 495500.CrossRefGoogle Scholar
Maas, P. W. Th., Oremus, P. A. I. & Otten, H. 1983. Nematodes (Longidorus sp. and Tylenchorhynchus microphasmis Loof) in growth and nodulation of sea buckthorn (Hippophaë rhamnoides L.). Plant and soil 73, 141147.CrossRefGoogle Scholar
Mack, R. N. 1976. Survivorship of Cerastium atrovirens at Aberffraw, Anglesey. Journal of Ecology 64, 309312.CrossRefGoogle Scholar
Mack, R. N. & Harper, J. L. 1977. Interference in dune annuals: spatial pattern and neighbourhood effects. Journal of Ecology 65, 345363.CrossRefGoogle Scholar
Malloch, A. 1989. Plant communities of the British sand dunes. Proceedings of the Royal Society of Edinburgh 96B, 5374.Google Scholar
Marshall, J. K. 1965. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. Journal of Ecology 53, 447463.CrossRefGoogle Scholar
Maun, M. A. & Lapierre, J. 1984. The effects of burial by sand on Ammophila breviligulata. Journal of Ecology 72, 827839.CrossRefGoogle Scholar
Metcalfe, C. R. 1960. Anatomy of the Monocotyledons. I. Gramineae. Oxford: Clarendon Press.Google Scholar
Old, K. M. & Nicolson, T. H. 1975. Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytologist 74, 5158.CrossRefGoogle Scholar
Olson, J. S. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Botanical Gazette 119, 125170.CrossRefGoogle Scholar
Oosterveld, P. 1985. Grazing in dune areas: the objectives of nature conservation and the aims of research for nature conservation management. In Sand Dunes and their Management, ed. Doody, P., Focus on Nature Conservation 13, pp. 187203. Peterborough: Nature Conservancy Council.Google Scholar
Oremus, P. A. I. 1982. Growth and nodulation of Hippophaë rhamnoides L. in the coastal sanddunes of The Netherlands. Doctoral thesis, University of Utrecht.Google Scholar
Oremus, P. A. I. & Otten, H. 1981. Factors affecting growth and nodulation of Hippophaë rhamnoides L. ssp. rhamnoides in soils from two successional stages of dune formation. Plant and Soil 63, 317331.CrossRefGoogle Scholar
Page, R. R., da Vinha, S. G. & Agnew, A. D. Q. 1985. The reaction of some sand-dune plant species to experimentally imposed environmental change: a reductionist approach to stability. Vegetatio 61, 105114.CrossRefGoogle Scholar
Pemadasa, M. A. & Lovell, P. H. 1974. The mineral nutrition of some dune annuals. Journal of Ecology 62, 647657.CrossRefGoogle Scholar
Pemadasa, M. A. & Lovell, P. H. 1976. Effects of the timing of the life-cycle on the vegetative growth of some dune annuals. Journal of Ecology 64, 213222.CrossRefGoogle Scholar
Purer, E. A. 1942. Anatomy and ecology of Ammophila arenaria Link. Madroño 6, 167171.Google Scholar
Putten, W. H. van der, van Dijk, C. & Troelstra, S. R. 1988. Biotic soil factors affecting the growth and development of Ammophila arenaria. Oecologia 76, 313320.CrossRefGoogle ScholarPubMed
Ranwell, D. 1958. Movement of vegetated sand dunes at Newborough Warren, Anglesey. Journal of Ecology 46, 83100.CrossRefGoogle Scholar
Ranwell, D. 1960. Newborough Warren, Anglesey. III. Changes in the vegetation on parts of the dune system after the loss of rabbits by myxomatosis. Journal of Ecology 48, 385395.CrossRefGoogle Scholar
Ranwell, D. 1972. Ecology of Salt Marshes and Sand Dunes. London: Chapman and Hall.Google Scholar
Read, D. J. 1989. Mycorrhizas and nutrient cycling in sand dune ecosystems. Proceedings of the Royal Society of Edinburgh 96B, 89110.Google Scholar
Richardson, A. M. M. 1979. Morph frequencies of empty intact shells from Cepaea nemoralis (L.) colonies on sand dunes in south west England. Journal of Molluscan Studies 45, 98107.Google Scholar
Salisbury, E. J. 1925. Note on the edaphic succession in some dune soils with special reference to the time factor. Journal of Ecology 13, 322328.CrossRefGoogle Scholar
Salisbury, E. J. 1952. Downs and Dunes: their Plant Life and its Environment. London: Bell.Google Scholar
Schat, H. & Scholten, M. 1985. Comparative population ecology of dune slack species: the relation beween population stability and germination behaviour in brackish environments. Vegetatio 61, 189195.CrossRefGoogle Scholar
Slobodchikoff, C. N. & Doyen, J. T. 1977. Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58, 11711175.CrossRefGoogle Scholar
Smirnoff, N. & Stewart, G. R. 1985. Stress metabolites and their role in coastal plants. Vegetatio 62, 273278.CrossRefGoogle Scholar
Tansley, A. G. 1939. The British Islands and their Vegetation. Cambridge: Cambridge University Press.Google Scholar
Thomas, A. S. 1963. Further changes in vegetation since the advent of myxomatosis. Journal of Ecology 51, 151186.CrossRefGoogle Scholar
Wahab, A. M. A. 1975. Nitrogen fixation by Bacillus strains isolated from the rhizosphere of Ammophila arenaria. Plant and Soil 42, 703708.CrossRefGoogle Scholar
Wallén, B. 1980. Changes in structure and function of Ammophila during primary succession. Oikos 34, 227238.CrossRefGoogle Scholar
Watkinson, A. R., Huiskes, A. H. L. & Noble, J. C. 1979. The demography of sand dune species with contrasting life cycles. In Ecological Processes in Coastal Environments, eds Jefferies, R. L. & Davy, A. J., pp. 95112. Oxford: Blackwell Scientific Publications.Google Scholar
Watt, A. S. 1947. Pattern and process in the plant community. Journal of Ecology 35, 122.CrossRefGoogle Scholar
Webley, D. M., Eastwood, D. J. & Gimingham, C. H. 1952. Development of a soil microflora in relation to plant succession on sand-dunes, including the “rhizosphere” flora associated with colonizing species. Journal of Ecology 40, 168178.CrossRefGoogle Scholar
Welch, R. C. 1989. Invertebrates of Scottish sand dunes. Proceedings of the Royal Society of Edinburgh 96B, 267287.Google Scholar
Willis, A. J. 1963. Braunton Burrows: the effects on the vegetation of the addition of mineral nutrients to the dune soils. Journal of Ecology 51, 353374.CrossRefGoogle Scholar
Willis, A. J. 1964. Investigations on the physiological ecology of Tortula ruraliformis. Transactions of the British Bryological Society 4, 668683.CrossRefGoogle Scholar
Willis, A. J. 1965. The influence of mineral nutrients on the growth of Ammophila arenaria. Journal of Ecology 53, 735745.CrossRefGoogle Scholar
Willis, A. J. 1985a. Dune water and nutrient regimes – their ecological relevance. In Sand Dunes and their Management, ed. Doody, P., Focus on Nature Conservation 13, pp. 159174. Peterborough: Nature Conservancy Council.Google Scholar
Willis, A. J. 1985b. Plant diversity and change in a species-rich dune system. Transactions of the Botanical Society of Edinburgh 44, 291308.CrossRefGoogle Scholar
Willis, A. J., Folkes, B. F., Hope-Simpson, J. F. & Yemm, E. W. 1959a. Braunton Burrows: the dune system and its vegetation. Part I. Journal of Ecology 47, 124.CrossRefGoogle Scholar
Willis, A. J., Folkes, B. F., Hope-Simpson, J. F. & Yemm, E. W. 1959b. Ibid. Part II. Journal of Ecology 47, 249288.Google Scholar
Willis, A. J. & Jefferies, R. L. 1963. Investigations on the water relations of sand-dune plants under natural conditions. In The Water Relations of Plants, eds Rutter, A. J. & Whitehead, F. H., Symposium No. 3, British Ecological Society, pp. 168189. London : Blackwell Scientific Publications.Google Scholar
Willis, A. J. & Yemm, E. W. 1961. Braunton Burrows: mineral nutrient status of the dune soils. Journal of Ecology 49, 377390.CrossRefGoogle Scholar
Wilson, K. 1960. The time factor in the development of dune soils at South Haven Peninsula, Dorset. Journal of Ecology 48, 341359.CrossRefGoogle Scholar
Zoon, F. C. 1986. On the relative involvement of nematodes and other soil factors in the decline of Hippophaë rhamnoides L. in the Netherlands. Revue Nématologique 9, 314.Google Scholar