Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-rmx46 Total loading time: 0.258 Render date: 2022-07-07T14:58:04.884Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The chemical ecology of herbivory on willows

Published online by Cambridge University Press:  05 December 2011

J. M. Pasteels
Affiliation:
Laboratoire de Biologie animale et cellulaire, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
M. Rowell-Rahier
Affiliation:
Zoologisches Institut der Universität, Rheinsprung 9, CH-4051 Basel, Switzerland
Get access

Synopsis

Phenolic secondary compounds and trichomes are instrumental in the regulation of herbivory on Salicaceae. The roles of phenolics in willows as toxins or deterrents, as phagostimulants or ovipository signals, and as precursors in insect chemical defence are briefly reviewed. The interactions between salicaceous plants, herbivores and their predators are discussed in the context of theories on the evolution of interactions among three trophic levels.

Type
Invited papers
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alliende, M. C. 1989. Demographic studies of a dioecious tree. II. The distribution of leaf predation within and between trees. Journal of Ecology 77, 1048–58.CrossRefGoogle Scholar
Alliende, M. C. & Harper, J. L. 1989. Demographic studies of a dioecious tree. I. Colonization, sex and age structure of a population of Salix cinerea L. Journal of Ecology 77, 1029–47.CrossRefGoogle Scholar
Bryant, J. P. 1987. Feltleaf willow-snowshoe hare interactions: Plant carbon/nutrient balance and floodplain succession. Ecology 68, 1319–27.CrossRefGoogle Scholar
Bryant, J. P., Chapin, F. S. III, & Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357–68.CrossRefGoogle Scholar
Clark, J. W. 1981. Feeding deterrent receptors in the last instar African armyworm, Spodoptera exempta: a study using salicin and caffein. Entomologia Experimentalis et Applicata 29, 189–97.CrossRefGoogle Scholar
Clausen, T. P., Reichardt, P. B., Bryant, J. P., Werner, R. A., Post, K. & Frisby, K. 1989. Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. Journal of Chemical Ecology 15, 2335–46.CrossRefGoogle Scholar
Coley, P. D., Bryant, J. P. & Chapin, F. S. III, 1985. Resource availability and plant antiherbivore defense. Science 230, 895–9.CrossRefGoogle ScholarPubMed
Denno, R. F., Larsson, S. & Olmstead, K. L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71, 124–37.CrossRefGoogle Scholar
Edwards, W. R. N. 1978. Effect of salicin content on palatability of Populus foliage to opossum (Trichosurus vulpecula). New Zealand Journal of Science 21, 103–6.Google Scholar
Elmqvist, T., Ericson, L., Danell, K. & Salamonson, A. 1988. Latitudinal sex ratio variation in willows, Salix spp., and gradients in vole herbivory. Oikos 51, 259–66.CrossRefGoogle Scholar
Fabre, J.-H. 1891. Souvenirs Entomologiques, Vol. 4, pp. 173190. Paris: Delagrave.Google Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10, 140.Google Scholar
Futuyma, D. J. & Slatkin, M. 1983. Coevolution, pp. 114. Sunderland: Sinauer.Google Scholar
Hegnauer, R. 1973. Chemotaxonomie der Pflanzen VI. Basel: Birkhäuser.CrossRefGoogle Scholar
Jermy, T. 1984. Evolution of insect/host plant relationships. American Naturalist 124, 609–30.CrossRefGoogle Scholar
Julkunenen-Tiito, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern salicaceae species. Phytochemistry 25, 663–7.CrossRefGoogle Scholar
Larsson, S., Wirén, A., Lundgren, L. & Ericsson, T. 1986. Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). Oikos 47, 205–10.CrossRefGoogle Scholar
Lindroth, R. L. 1988. Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochemistry 18, 789–92.CrossRefGoogle Scholar
Lindroth, R. L., Hsia, M. T. S. & Scriber, J. M. 1987. Seasonal patterns in the phytochemistry of three Populus species. Biochemical Systematics and Ecology 15, 681–6.CrossRefGoogle Scholar
Lindroth, R. L., Scriber, J. M. & Hsia, M. T. S. 1988. Chemical ecology of tiger swallowtail: mediation of host use by phenolic glycosides. Ecology 69, 814–22.CrossRefGoogle Scholar
Lindroth, R. L. & Peterson, S. S. 1988. Effects of plant phenols on performance of southern armyworm larvae. Oecologia 75, 185–9.CrossRefGoogle ScholarPubMed
Matsuda, K. & Matsuo, H. 1985. A flavonoid, luteolin-7-glucoside, as well as salicin and populin, stimulating the feeding of leaf beetles attacking salicaceous plants. Applied Entomology and Zoology 20, 305–13.Google Scholar
Matsuda, K. & Senbo, S. 1986. Chlorogenic acid as a feeding deterrent for the Salicaceae-feeding leaf beetle, Lochmaeae capreae cribata (Coleoptera: Chrysomelidae) and other species of leaf beetles. Applied Entomology and Zoology 21, 411–16.Google Scholar
Palo, R. T. 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. Journal of Chemical Ecology 10, 499520.CrossRefGoogle ScholarPubMed
Pasteels, J. M., Rowell-Rahier, M., Braekman, J. C. & Dupont, A. 1983. Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomelinae larvae. Physiological Entomology 8, 307–14.CrossRefGoogle Scholar
Pasteels, J. M., Rowell-Rahier, M., Braekman, J. C. & Daloze, D. 1984. Chemical defences in leaf beetles and their larvae: the ecological, evolutionary and taxonomic significance. Biochemical Systematics and Ecology 12, 395406.CrossRefGoogle Scholar
Pasteels, J. M., Daloze, D. & Rowell-Rahier, M. 1986. Chemical defence in chrysomelid eggs and neonate larvae. Physiological Entomology 11, 2937.CrossRefGoogle Scholar
Pasteels, J. M., Rowell-Rahier, M. & Raupp, M. J. 1988. Plant-derived defense in chrysomelid beetles. In Novel Aspects of insect-plant interactions, pp. 235–72, eds. Barbosa, P. & Letourneau, D. New York: J. Wiley.Google Scholar
Pasteels, J. M., Duffey, S. & Rowell-Rahier, M. 1990. Toxins in chrysomelid beetles. Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. Journal of Chemical Ecology 16, 211–22.CrossRefGoogle ScholarPubMed
Pasteels, J. M. & Grégoire, J. C. 1984. Selective predation on chemically defended chrysomelid larvae. Journal of Chemical Ecology 10, 1693–700.CrossRefGoogle ScholarPubMed
Pasteels, J. M. & Rowell-Rahier, M. 1991. Proximate and ultimate causes for host plant influence on chemical defense of leaf beetles (Coleoptera: Chrysomelidae). Entomologia Generalis 15, 227–35.CrossRefGoogle Scholar
Price, P. W., Waring, G. L., Julkunen-Tiitto, R., Tahvanainen, J., Mooney, H. A. & Craig, T. P. 1989. Carbon-nutrient balance hypothesis in within-species phytochemical variation of Salix lasiolepis. Journal of Chemical Ecology 15, 1117–31.CrossRefGoogle Scholar
Reichardt, P. B., Bryant, J. P., Mattes, B. R., Clausen, T. P., Chapin, F. S. III, Meyer, M. 1990. Winter chemical defense of Alaskan balsam poplar against snowshoe hares. Journal of Chemical Ecology 16, 1941–59.CrossRefGoogle ScholarPubMed
Rhoades, D. F. & Cates, R. G. 1976. Towards a general theory of plant-antiherbivore chemistry. Recent Advances in Phytochemistry 10, 168213.Google Scholar
Roininen, H. & Tahvanainen, J. 1989. Host selection and larval performance of two willow-feeding sawflies. Ecology 70, 129–36.CrossRefGoogle Scholar
Rowell-Rahier, M. 1984a. The presence or absence of phenolglycosides in Salix (Salicaceae) leaves and the level of dietary specialisation of some of their herbivorous insects. Oecologia 62, 2630.CrossRefGoogle Scholar
Rowell-Rahier, M. 1984b. The food plant preferences of Phratora vitellinae (Coleoptera: Chrysomelinae). A. Field observations. Oecologia 64, 369–74.CrossRefGoogle Scholar
Rowell-Rahier, M. 1984c. The food plant preferences of Phratora vitellinae (Coleoptera: Chrysomelinae). B. A laboratory comparison of geographically isolated populations and experiments on conditioning. Oecologia 64, 375–80.CrossRefGoogle Scholar
Rowell-Rahier, M., Soetens, Ph. & Pasteels, J. M. 1987. Influence of phenolglucosides on the distribution of herbivores on willows. In Insects-Plants, pp. 91–5, eds. Labeyrie, V., Fabres, G. & Lachaise, D. Dordrecht: Junk.Google Scholar
Rowell-Rahier, M. & Pasteels, J. M., 1982. The significance of salicin for a Salix-feeder, Phratora (Phyllodecta) vitellinae. Proceedings 5th international Symposium Insect-Plant Relationships. Wageningen, Pudoc, Wageningen, pp. 73–9.Google Scholar
Rowell-Rahier, M. & Pasteels, J. M., 1986. Economics of chemical defense in Chrysomelinae. Journal of Chemical Ecology 12, 1189–203.CrossRefGoogle ScholarPubMed
Scharfetter, R. 1953. Salix L.-Weide. Biographie von Pflanzensippen, pp. 7497. Vienna: Springer.CrossRefGoogle Scholar
Schoonhoven, L. M. 1969. Gustation and foodplant selection in some lepidopterous larvae. Entomologia Experimentalis et Applicata 12, 555–64.CrossRefGoogle Scholar
Smiley, J. T., Horn, J. M. & Rank, N. E. 1985. Ecological effects of salicin at three trophic levels: new problems from old adaptations. Science 229, 649–51.CrossRefGoogle ScholarPubMed
Smiley, J. T. & Rank, N. E. 1986. Predator protection versus rapid growth in a montane leaf beetle. Oecologia 70, 106–12.CrossRefGoogle Scholar
Soetens, Ph., Rowell-Rahier, M. & Pasteels, J. M. 1991. Influence of phenolglucosides and trichome density on the distribution of insect herbivores on willows. Entomologia Experimentalis et Applicata 59, 175–87.CrossRefGoogle Scholar
Tahvanainen, J., Helle, E., Julkunen-Tiito, R. & Lavola, A. 1985a. Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia 65, 319–23.CrossRefGoogle ScholarPubMed
Tahvanainen, J., Julkunen-Tiitto, R. & Kettunen, J. 1985b. Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles. Oecologia 67, 52–6.CrossRefGoogle ScholarPubMed
Thieme, H. 1965a. Die Phenolglykoside der Salicaceen. 6. Mitteilung: Untersuchungen über die jahreszeitlich bedingten Veränderungen der Glykosidkonzentrationen, über die Abhängigkeit des Glykosidgehalts von der Tageszeit und vom Alter der Pflanzenorgane. Pharmazie 20, 688–91.Google Scholar
Thieme, H. 1965b. Die Phenolglykosidespektren und der Glykosidgehalt der mitteldeutchen Salix–Arten. Pharmazie 20, 570–4.Google Scholar
Thieme, H. & Benecke, R. 1971. Die Phenolglykoside der Salicaceen. 8. Mitteilung: Untersuchungen über die Glykosidakkumulation in einigen mitteleuropaischen Populus–Arten. Pharmazie 26, 227–31.Google Scholar
Waring, G. L. & Price, P. W. 1988. Consequences of host plant chemical and physical variability to an associated herbivore. Ecological Research 3, 205–16.CrossRefGoogle Scholar
Zucker, W. V. 1982. How aphids choose leaves: the role of phenolics in host selection by a galling aphid. Ecology 63, 972–81.CrossRefGoogle Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The chemical ecology of herbivory on willows
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The chemical ecology of herbivory on willows
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The chemical ecology of herbivory on willows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *