Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T16:22:34.392Z Has data issue: false hasContentIssue false

Activated oxygen species and superoxide dismutase activity in peroxisomes from senescent pea leaves

Published online by Cambridge University Press:  05 December 2011

Gabriela M. Pastori
Affiliation:
Unidad de Bioquímica Vegetal, Estación Experimental del Zaidín, C.S.I.C, Apdo. 419, E-18080 Granada, Spain
Luis A. del Río
Affiliation:
Unidad de Bioquímica Vegetal, Estación Experimental del Zaidín, C.S.I.C, Apdo. 419, E-18080 Granada, Spain
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beauchamp, C. O. & Fridovich, I. 1971. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–87.Google Scholar
Davis, B. J. 1964. Disc gel electrophoresis. Annals of the New York Academy of Sciences 121, 404–27.CrossRefGoogle Scholar
De Bellis, L., Picciarelli, P., Pistelli, L. & Alpi, A. 1990. Localization of glyoxylate-cycle enzymes in peroxisomes of senescent leaves and green cotyledons. Planta 180, 435–9.Google Scholar
De Bellis, L., Tsugeki, R. & Nishimura, M. 1991. Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin (Cucurbita sp.) during senescence. Plant Cell Physiology 32, 1227–35.Google Scholar
del Rio, L. A., Fernández, V. M., Rupérez, F. L., Sandalio, L. M. & Palma, J. M. 1989. NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiology 89, 728–31.CrossRefGoogle ScholarPubMed
del Rio, L. A., Sandalio, L. M., Palma, J. M., Bueno, P. & Corpas, F. J. 1992. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radicals in Biology & Medicine 13, 557–80.CrossRefGoogle ScholarPubMed
Frew, J. E., Jones, P. & Scholes, G. 1983. Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution. Analytica Chimica Acta 155, 139–50.Google Scholar
Halliwell, B. & Gutteridge, J. M. C. 1989. Free radicals in biology & medicine. London: Oxford University Press.Google Scholar
Landolt, R. & Matile, P. 1990. Glyoxysome-like microbodies in senescent spinach leaves. Plant Science 72, 159163.Google Scholar
López-Huertas, E., Sandalio, L. M. & del Rio, L. A. 1993. Peroxisomal membrane polypeptides of pea leaves: Identification and response to plant nutritional stress. (Submitted for publication).Google Scholar
Pastori, G. M. & del Rio, L. A. 1993. An activated oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves. Planta (in press).Google Scholar
Sandalio, L. M., Palma, J. M. & del Rio, L. A. 1987. Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Science 51, 18.CrossRefGoogle Scholar
Thompson, J. E., Ledge, R. L. & Barber, R. F. 1987. The role of free radicals in senescence and wounding. New Phytologist 105, 317–44.CrossRefGoogle ScholarPubMed