Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T15:40:44.856Z Has data issue: false hasContentIssue false

Uniqueness and time oscillating behaviour of finite points blow-up solutions of the fast diffusion equation

Published online by Cambridge University Press:  09 August 2019

Kin Ming Hui*
Affiliation:
Institute of Mathematics, Academia Sinica Taipei, Taiwan, R. O. C. (kmhui@gate.sinica.edu.tw)

Abstract

Let n ⩾ 3 and 0 < m < (n − 2)/n. We extend the results of Vazquez and Winkler (2011, J. Evol. Equ. 11, no. 3, 725–742) and prove the uniqueness of finite points blow-up solutions of the fast diffusion equation ut = Δum in both bounded domains and ℝn × (0, ∞). We also construct initial data such that the corresponding solution of the fast diffusion equation in bounded domain oscillates between infinity and some positive constant as t → ∞.

Type
Research Article
Copyright
Copyright © 2019 The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aronson, D. G.. The porous medium equation. CIME Lectures in Some problems in Nonlinear Diffusion, Lecture Notes in Mathematics,vol. 1224 (New York: Springer-Verlag, 1986).Google Scholar
2Choi, B. and Lee, K.. Multi-D fast diffusion equation via diffusive scaling of generalized Carleman kinetic equation, arxiv:1510.08997.Google Scholar
3Dahlberg, B. E. J. and Kenig, C.. Non-negative solutions of generalized porous medium equations. Revista Matemática Iberoamericana 2 (1986), 267305.CrossRefGoogle Scholar
4Daskalopoulos, P. and Kenig, C. E.. Degenerate diffusion-initial value problems and local regularity theory. Tracts in Mathematics 1 (Zurich, Switzerland: European Mathematical Society, 2007).CrossRefGoogle Scholar
5Daskalopoulos, P. and Sesum, N.. On the extinction profile of solutions to fast diffusion. J. Reine Angew. Math. 622 (2008), 95119.Google Scholar
6Daskalopoulos, P. and Sesum, N.. The classification of locally conformally flat Yamabe solitons. Advances in Math. 240 (2013), 346369.CrossRefGoogle Scholar
7de Pablo, A. and Vazquez, J. L.. Travelling waves and finite propagation in a reaction-diffusion equation. J. Differ. Equ. 93 (1991), 1961.CrossRefGoogle Scholar
8del Pino, M. and Sáez, M.. On the extinction profile for solutions of u t = Δu (N − 2)/(N + 2). Indiana Univ. Math. J. 50 (2001), 611628.Google Scholar
9Golse, F. and Salvarani, F.. The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem. Nonlinearity 20 (2007), 927942.Google Scholar
10Herrero, M. A. and Pierre, M.. The Cauchy problem for u t = Δu m when 0 < m < 1. Trans. A. M. S. 291 (1985), 145158.Google Scholar
11Hsu, S. Y.. Existence and asymptotic behaviour of solutions of the very fast diffusion equation. Manuscripta Math. 140 (2013), 441460.CrossRefGoogle Scholar
12Huang, F., Pan, R. and Wang, Z.. L 1 convergence to the Barenblatt solution for compressible Euler equations with damping. Arch. Ration. Mech. Anal. 200 (2011), 665689.CrossRefGoogle Scholar
13Hui, K. M. and Kim, S.. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete Contin. Dyn. Syst. Series-A 35 (2015), 48594887.Google Scholar
14Hui, K. M. and Kim, S.. Asymptotic large time behaviour of singular solutions of the fast diffusion equation. Discrete Contin. Dyn. Syst. Series-A 37 (2017), 59435977.Google Scholar
15Hui, K. M. and Kim, S.. Existence and large time behaviour of finite points blow-up solutions of the fast diffusion equation. Calc. Var. PDE 57 (2018), 112, https://doi.org/10.1007/s00526-018-1396-9.CrossRefGoogle Scholar
16Kato, T.. Schrödinger operators with singular potentials. Israel J. Math. 13 (1973), 135148.CrossRefGoogle Scholar
17Ladyzenskaya, O. A., Solonnikov, V. A. and Uraltceva, N. N.. Linear and quasilinear equations of parabolic type. Transl. Math. Mono., vol. 23 (Providence, R.I., U.S.A.: Amer. Math. Soc., 1968).Google Scholar
18Luo, T. and Zeng, H.. Global existence and smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Commun. Pure. Appl. Math. 69 (2016), 13541396.Google Scholar
19Vazquez, J. L.. Smoothing and decay estimates for nonlinear diffusion equations. Oxford Lecture Series in Mathematics and its Applications,vol. 33 (Oxford: Oxford University Press, 2006).CrossRefGoogle Scholar
20Vazquez, J. L.. The porous medium equation. Mathematical theory. Oxford Mathematical Monographs (Oxford: The Clarendon Press, Oxford University Press, 2007) xxii+624 pp.Google Scholar
21Vazquez, J. L. and Winkler, M.. The evolution of singularities in fast diffusion equations: infinite-time blow-down. SIAM J. Math. Anal. 43 (2011), 14991535.CrossRefGoogle Scholar
22Vazquez, J. L. and Winkler, M.. Highly time-oscillating solutions for very fast diffusion equations. J. Evol. Equ. 11 (2011), 725742.CrossRefGoogle Scholar