Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T12:48:31.825Z Has data issue: false hasContentIssue false

Topological regularity of isoperimetric sets in PI spaces having a deformation property

Published online by Cambridge University Press:  09 October 2023

Gioacchino Antonelli
Affiliation:
Courant Institute of Mathematical Sciences, NYU, 251 Mercer Street, New York 10012, USA (ga2434@nyu.edu)
Enrico Pasqualetto
Affiliation:
Department of Mathematics and Statistics, University of Jyvaskyla, P.O. Box 35 (MaD), Jyvaskyla FI-40014, Finland (enrico.e.pasqualetto@jyu.fi)
Marco Pozzetta
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italy (marco.pozzetta@unina.it)
Ivan Yuri Violo
Affiliation:
Department of Mathematics and Statistics, University of Jyvaskyla, P.O. Box 35 (MaD), Jyvaskyla FI-40014, Finland (ivan.y.violo@jyu.fi)

Abstract

We prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed $\mathrm {RCD}(K,N)$ spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed $\mathrm {RCD}(0,N)$ spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostiniani, V., Fogagnolo, M. and Mazzieri, L.. Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. Invent. Math. 222 (2020), 10331101.10.1007/s00222-020-00985-4CrossRefGoogle Scholar
Almgren, F. J. Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4 (1976), viii+199.Google Scholar
Ambrosio, L.. Fine properties of sets of finite perimeter in doubling metric measure spaces. Set Valued Anal. 10 (2002), 111128.10.1023/A:1016548402502CrossRefGoogle Scholar
Ambrosio, L., Calculus, heat flow and curvature-dimension bounds in metric measure spaces, In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures (World Sci. Publ., Hackensack, NJ, 2018), pp. 301–340.CrossRefGoogle Scholar
Ambrosio, L., Pinamonti, A. and Speight, G.. Tensorization of Cheeger energies, the space $H^{1,1}$ and the area formula for graphs. Adv. Math. 281 (2015), 11451177.10.1016/j.aim.2015.06.004CrossRefGoogle Scholar
Antonelli, G., Pasqualetto, E. and Pozzetta, M.. Isoperimetric sets in spaces with lower bounds on the Ricci curvature. Nonlinear Anal. 220 (2022), 112839.CrossRefGoogle Scholar
Antonelli, G., Pasqualetto, E., Pozzetta, M. and Semola, D.. Asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02674-y.CrossRefGoogle Scholar
Badreddine, Z. and Rifford, L.. Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups. Ann. Inst. Fourier (Grenoble) 70 (2020), 23032330.CrossRefGoogle Scholar
Balogh, Z. M. and Kristály, A.. Sharp geometric inequalities in spaces with nonnegative Ricci curvature and Euclidean volume growth. Math. Ann. 385 (2023), 17471773.10.1007/s00208-022-02380-1CrossRefGoogle Scholar
Barilari, D. and Rizzi, L.. Sharp measure contraction property for generalized H-type Carnot groups. Commun. Contemp. Math. 20 (2018), 1750081.10.1142/S021919971750081XCrossRefGoogle Scholar
Baudoin, F., Grong, E., Kuwada, K. and Thalmaier, A.. Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calc. Var. Partial Differ. Equ. 58 (2019), 130.CrossRefGoogle Scholar
Björn, A. and Björn, J., Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics (European Mathematical Society (EMS), Zürich, 2011).10.4171/099CrossRefGoogle Scholar
Brendle, S.. Sobolev inequalities in manifolds with nonnegative curvature. Commun. Pure Appl. Math. 76 (2023), 21922218.10.1002/cpa.22070CrossRefGoogle Scholar
Bruè, E., Pasqualetto, E. and Semola, D.. Rectifiability of the reduced boundary for sets of finite perimeter over $RCD(K,N)$ spaces. J. Eur. Math. Soc. 25 (2023), 413465.10.4171/JEMS/1217CrossRefGoogle Scholar
Buser, P.. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15 (1982), 213230.CrossRefGoogle Scholar
Cavalletti, F. and Manini, D.. Isoperimetric inequality in noncompact $\mathrm {MCP}$ spaces. Proc. Am. Math. Soc. 150 (2022), 35373548.CrossRefGoogle Scholar
Cavalletti, F. and Manini, D., Rigidities of isoperimetric inequality under nonnegative Ricci curvature. Preprint arXiv:2207.03423 (2022).Google Scholar
Cavalletti, F. and Mondino, A.. New formulas for the Laplacian of distance functions and applications. Anal. PDE 13 (2020), 20912147.CrossRefGoogle Scholar
Chavel, I., Isoperimetric inequalities, vol. 145 of Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 2001).Google Scholar
Chavel, I. and Feldman, E. A.. Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds. Duke Math. J. 64 (1991), 473499.CrossRefGoogle Scholar
Cinti, E. and Pratelli, A.. The $\varepsilon -\varepsilon ^\beta$ property, the boundedness of isoperimetric sets in $\mathbb {R}^N$ with density, and some applications. J. Reine Angew. Math. 728 (2017), 65103.CrossRefGoogle Scholar
Comi, G. E. and Magnani, V.. The Gauss–Green theorem in stratified groups. Adv. Math. 360 (2020), 106916.CrossRefGoogle Scholar
Coulhon, T. and Saloff-Coste, L.. Variétés riemanniennes isométriques à l'infini. Rev. Mat. Iberoamericana 11 (1995), 687726.CrossRefGoogle Scholar
Galli, M. and Ritoré, M.. Existence of isoperimetric regions in contact sub-Riemannian manifolds. J. Math. Anal. Appl. 397 (2013), 697714.CrossRefGoogle Scholar
Gonzalez, E., Massari, U. and Tamanini, I.. On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32 (1983), 2537.CrossRefGoogle Scholar
Hajłasz, P. and Koskela, P.. Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688) (2000), pp. x+101.Google Scholar
Heinonen, J., Lectures on analysis on metric spaces, Universitext (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
Heinonen, J., Kilpeläinen, T. and Martio, O.. Nonlinear potential theory of degenerate elliptic equations (Dover Publications Inc., Mineola, NY, 2006). pp. xii+404.Google Scholar
Heinonen, J., Koskela, P., Shanmugalingam, N. and Tyson, J. T., Sobolev spaces on metric measure spaces, Vol. 27 of New Mathematical Monographs (Cambridge University Press, Cambridge, 2015).CrossRefGoogle Scholar
Kanai, M.. Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan 38 (1986), 227238.CrossRefGoogle Scholar
Kinnunen, J., Korte, R., Lorent, A. and Shanmugalingam, N.. Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal. 23 (2013), 16071640.CrossRefGoogle Scholar
Leonardi, G. P. and Rigot, S.. Isoperimetric sets on Carnot groups. Houston J. Math. 29 (2003), 609637.Google Scholar
Lott, J. and Villani, C.. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169 (2009), 903991.CrossRefGoogle Scholar
Maggi, F., Sets of finite perimeter and geometric variational problems, vol. 135 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2012).CrossRefGoogle Scholar
Miranda, M. Jr.. Functions of bounded variation on ‘good’ metric spaces. J. Mathé. Pures Appl 82 (2003), 9751004.CrossRefGoogle Scholar
Morgan, F.. Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355 (2003), 50415052.CrossRefGoogle Scholar
Pozuelo, J., Existence of isoperimetric regions in sub-Finsler nilpotent groups. preprint arXiv:2103.06630 (2021).Google Scholar
Pratelli, A. and Saracco, G.. The $\varepsilon -\varepsilon ^{\beta }$ property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. 20 (2020), 539555.CrossRefGoogle Scholar
Rajala, T.. Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44 (2012), 477494.CrossRefGoogle Scholar
Sturm, K.-T.. On the geometry of metric measure spaces. II. Acta Math. 196 (2006), 133177.CrossRefGoogle Scholar
Xia, Q.. Regularity of minimizers of quasi perimeters with a volume constraint. Interfaces Free Bound. 7 (2005), 339352.CrossRefGoogle Scholar