Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T17:42:54.477Z Has data issue: false hasContentIssue false

Nonexistence of anti-symmetric solutions for fractional Hardy–Hénon system

Published online by Cambridge University Press:  15 May 2023

Jiaqi Hu
Affiliation:
School of Mathematics, Hunan University, Changsha 410082, China (hujq@hnu.edu.cn, duzr@hnu.edu.cn)
Zhuoran Du
Affiliation:
School of Mathematics, Hunan University, Changsha 410082, China (hujq@hnu.edu.cn, duzr@hnu.edu.cn)

Abstract

We study anti-symmetric solutions about the hyperplane $\{x_n=0\}$ for the following fractional Hardy–Hénon system:

\[ \left\{\begin{array}{@{}ll} (-\Delta)^{s_1}u(x)=|x|^\alpha v^p(x), & x\in\mathbb{R}_+^n, \\ (-\Delta)^{s_2}v(x)=|x|^\beta u^q(x), & x\in\mathbb{R}_+^n, \\ u(x)\geq 0, & v(x)\geq 0,\ x\in\mathbb{R}_+^n, \end{array}\right. \]
where $0< s_1,s_2<1$, $n>2\max \{s_1,s_2\}$. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $\alpha,\beta$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$, one of our results shows that one domain of $(p,q)$, where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $\alpha, \beta$.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busca, J. and Manásevich, R.. A Liouville-type theorem for Lane–Emden systems. Indiana Univ. Math. J. 51 (2002), 3751.Google Scholar
Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007), 12451260.CrossRefGoogle Scholar
Chen, W., Li, C. and Li, Y.. A direct method of moving planes for the fractional Laplacian. Adv. Math. 308 (2017), 404437.CrossRefGoogle Scholar
Chen, W., Li, Y. and Zhang, R.. A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272 (2017), 41314157.CrossRefGoogle Scholar
Chen, W., Li, C. and Ou, B.. Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59 (2006), 330343.CrossRefGoogle Scholar
Chen, Z., Lin, C. and Zou, W.. Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal. 266 (2014), 10881105.CrossRefGoogle Scholar
Cheng, T., Huang, G. and Li, C.. The maximum principles for fractional Laplacian equations and their applications. Commun. Contemp. Math. 19 (2017), 1750018.CrossRefGoogle Scholar
Dai, W. and Qin, G.. Liouville type theorems for Hardy–Hénon equations with concave nonlinearities. Math. Nachr. 293 (2020), 10841093.CrossRefGoogle Scholar
Dai, W. and Qin, G.. Liouville type theorems for fractional and higher order Hénon–Hardy type equations via the method of scaling spheres. Int. Math. Res. Not. 70 (2022), rnac079.Google Scholar
Dai, W. and Peng, S.. Liouville theorems for nonnegative solutions to Hardy–Hénon type system on a half space. Ann. Funct. Anal. 13 (2022), 121.CrossRefGoogle Scholar
Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521573.CrossRefGoogle Scholar
Duong, A. T. and Le, P.. Symmetry and nonexistence results for a fractional Hénon–Hardy system on a half-space. Rocky Mt. J. Math. 49 (2019), 789816.CrossRefGoogle Scholar
Fazly, M. and Ghoussoub, N.. On the Hénon–Lane–Emden conjecture. Discrete Contin. Dyn. Syst. 34 (2014), 25132533.CrossRefGoogle Scholar
de Figueiredo, D. G. and Felmer, P.. A Liouville-type theorem for systems. Ann. Sc. Norm. Super. Pisa 21 (1994), 387397.Google Scholar
Gabriele, B.. Non-existence of positive solutions to semilinear elliptic equations on $\mathbb {R}^n$ or $\mathbb {R}_+^n$ through the method of moving planes. Commun. Partial Differ. Equ. 22 (1997), 16711690.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34 (1981), 525598.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6 (1981), 883901.CrossRefGoogle Scholar
Jin, T., Li, Y. and Xiong, J.. On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16 (2014), 11111171.CrossRefGoogle Scholar
Le, P.. Liouville theorem for fractional Hénon–Lane–Emden systems on a half space. Proc. R. Soc. Edinburgh Sect. A: Math. 150 (2020), 30603073.CrossRefGoogle Scholar
Li, C. and Zhuo, R.. Classification of anti-symmetric solutions to the fractional Lane–Emden system. Sci. China Math. 65 (2022), 122.Google Scholar
Li, D. and Zhuo, R.. An integral equation on half space. Proc. Am. Math. Soc. 8 (2010), 27792791.CrossRefGoogle Scholar
Li, K. and Zhang, Z.. Monotonicity theorem and its applications to weighted elliptic equations. Sci. China Math. 62 (2019), 19251934.CrossRefGoogle Scholar
Mitidieri, E.. Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb {R}^n$. Differ. Integr. Equ. 9 (1996), 465479.Google Scholar
Mitidieri, E. and Pokhozhaev, S. I.. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 3383.Google Scholar
Ni, W. M.. On a singular elliptic equation. Proc. Am. Math. Soc. 88 (1983), 614616.CrossRefGoogle Scholar
Peng, S.. Liouville theorems for fractional and higher-order Hénon–Hardy systems on $\mathbb {R}^n$. Complex Var. Elliptic Equ. 66 (2021), 18391863.CrossRefGoogle Scholar
Phan, Q. H.. Liouville-type theorems and bounds of solutions for Hardy–Hénon elliptic systems. Adv. Differ. Equ. 17 (2012), 605634.Google Scholar
Phan, Q. H. and Souplet, P.. Liouville-type theorems and bounds of solutions of Hardy–Hénon equations. J. Differ. Equ. 252 (2012), 25442562.CrossRefGoogle Scholar
Poláčik, P., Quittner, P. and Souplet, P.. Singularity and decay estimates in superlinear problems via Liouville-type theorems. I: Elliptic equations and systems. Duke Math. J. 139 (2007), 555579.CrossRefGoogle Scholar
Quaas, A. and Xia, A.. A Liouville type theorem for Lane–Emden systems involving the fractional Laplacian. Nonlinearity 29 (2016), 2279.CrossRefGoogle Scholar
Quaas, A. and Xia, A.. A Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Partial Differ. Equ. 52 (2015), 641659.CrossRefGoogle Scholar
Serrin, J. and Zou, H.. Existence of positive solutions of the Lane–Emden system. Atti Semin Mat. Fis. Univ. Modena 46 (1998), 369380.Google Scholar
Serrin, J. and Zou, H.. Non-existence of positive solutions of Lane–Emden systems. Differ. Integr. Equ. 9 (1996), 635653.Google Scholar
Silvestre, L.. Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007), 67112.CrossRefGoogle Scholar
Souplet, P.. The proof of the Lane–Emden conjecture in four space dimensions. Adv. Math. 221 (2009), 14091427.CrossRefGoogle Scholar
Zhang, L., Yu, M. and He, J.. A Liouville theorem for a class of fractional systems in $\mathbb {R}^n_+$. J. Differ. Equ. 263 (2017), 60256065.CrossRefGoogle Scholar
Zhuo, R. and Li, C.. Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. Cal. Var. Partial Differ. Equ. 61 (2022), 123.Google Scholar