Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T04:49:51.730Z Has data issue: false hasContentIssue false

Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems

Published online by Cambridge University Press:  14 November 2011

Bernd Carl
Affiliation:
Sektion Mathematik, Universität Jena, DDR-69 Jena

Synopsis

In this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.

Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.

The statements of this paper are obtained by results recently proved elsewhere by the author.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bergh, J. and Löfström, J.. Interpolation Spaces (Berlin: Springer, 1976).CrossRefGoogle Scholar
2Birman, M. Š. and Solomjak, M. Z.. Piecewise-polynomial approximations of functions of the classes W p. Mat. Sb. 73 (1967), 331355. (Russian).Google Scholar
3Carl, B.. Entropy numbers, s-numbers and eigenvalue problems. J. Funct. Anal. 40 (1981), to appear.Google Scholar
4Carl, B.. Entropy numbers of diagonal operators with an application to eigenvalue problems. J. Approx. Theory, in press.Google Scholar
5Carl, B. and Pietsch, A.. Entropy numbers of operators in Banach spaces. Lecture Notes in Mathematics 609, pp. 2133 (Berlin: Springer, 1977).Google Scholar
6Carl, B. and Triebel, H.. Inequalities between eigenvalues, entropy numbers and related quantities of compact operators in Banach spaces. Math. Ann. 251 (1980), 129133.CrossRefGoogle Scholar
7Ciesielski, Z.. Constructive function theory and spline systems. Studia Math. 53 (1975), 277302.Google Scholar
8Ciesielski, Z.. Convergence of spline expansions. In Linear spaces and approximation, Butzer, P. L. and Sz.-Nagy, B. (eds), pp. 433448 (Basel: Birkhäuser, 1978).CrossRefGoogle Scholar
9Höllig, K.. Diameters of classes of smooth functions. Proc. Conf. Quantitative Approximation Theory, Bonn 1979.Google Scholar
10Kolmogorov, A. N. and Tichomirov, V. M.. ε-entropy and ε-capacity of sets in function spaces. Uspehi Mat. Nauk 14 (2) (1959), 386. (Russian).Google Scholar
11Lorentz, G. G.. Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966), 903937.CrossRefGoogle Scholar
12Lorentz, G. G.. Approximation of Functions (New York: Academic, 1966).Google Scholar
13Mitjagin, B. S.. Approximative dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16 (4) (1961), 63132. (Russian).Google Scholar
14Mitjagin, B. S. and Pełczyn'ski, A.. Nuclear operators and approximative dimension. Proc. I. C. M. Moscow 1966, 366372.Google Scholar
15Pietsch, A.. Operator Ideals (Berlin: Verlag der Wissenschaften and North-Holland, 1978/1980).Google Scholar
16Pietsch, A.. Weyl numbers and eigenvalues of operators in Banach spaces. Math. Ann. 247 (1980), 149168.CrossRefGoogle Scholar
17Pietsch, A.. Eigenvalues of integral operators. Math. Ann. 247 (1980), 169178.CrossRefGoogle Scholar
18Pontrjagin, L. S. and Schnirelmann, L. G.. Sur une propriété métrique de la dimension. Ann. of Math. 33 (1932), 156162.CrossRefGoogle Scholar
19Ropela, S.. Spline bases in Besov spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319325.Google Scholar
20Triebel, H.. Interpolation Theory, Function Spaces, Differential Operators (Berlin: Verlag der Wissenschaften and North-Holland, 1978).Google Scholar
21Triebel, H.. Spaces of Besove–Hardy–Sobolev type (Leipzig: Teubner Texte Mathematik, 1978).Google Scholar
22Triebel, H.. Interpolationseigenschaften von Entropie- und Durchmesseridealen kompakter Operatoren. Studia Math. 34 (1970), 89107.CrossRefGoogle Scholar
23Triebel, H.. Interpolation properties of ε-entropy and diameters. Geometrical characteristics of the embedding of function spaces of Sobolev–Besov type. Mat. Sb. 98 (1975), 2141. (Russian).Google Scholar