Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T01:31:39.881Z Has data issue: false hasContentIssue false

Eigenvalue ratios and eigenvalue gaps of Sturm–Liouville operators

Published online by Cambridge University Press:  14 November 2011

C. K. Law
Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C., E-mail: law@sunl.math.nsysu.edu.tw
Yu-Ling Huang
Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, R.O.C

Abstract

We prove optimal lower bounds for arbitrary eigenvalue ratios (μmn) of the Sturm–Liouville operator with Dirichlet and Neumann boundary conditions. These imply optimal bounds for the eigenvalue gaps (μm – μn) of the corresponding problem. The method can be generalised to consider general separated endpoint boundary conditions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abramovich, S.. The gap between the first two eigenvalues of a one-dimensional Schrodinger operator with symmetric potential. Proc. Amer. Math. Soc. 111 (1991), 451–3.Google Scholar
2Ashbaugh, M. S. and Benguria, R. D.. Optimal bounds for ratios of eigenvalues of one-dimensional Schrodinger operators with Dirichlet boundary conditions and positive potentials. Comm. Math. Phys. 124 (1989), 403–15.CrossRefGoogle Scholar
3Ashbaugh, M. S. and Benguria, R. D.. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrodinger operators with symmetric single-well potentials. Proc. Amer. Math. Soc. 105 (1989), 419–24.Google Scholar
4Ashbaugh, M. S. and Benguria, R. D.. A sharp bound for the ratio of the first two eigenvalues of Dirichlet laplacians and extensions. Ann. Math. 135 (1992), 601–28.CrossRefGoogle Scholar
5Ashbaugh, M. S. and Benguria, R. D.. Eigenvalue ratios for Sturm-Liouville operators. J. Differential Equations 103 (1993), 205–19.Google Scholar
6Birkhoff, G. and Rota, G. C.. Ordinary Differential Equations, 4th edn (New York: Wiley, 1989).Google Scholar
7Chern, H. H. and Shen, C. L.. On the maximum and minimum of some functionals for the eigenvalue problem of Sturm-Liouville type. J. Differential Equations 107 (1994), 6879.Google Scholar
8Huang, Y. L.. Eigenvalue ratios for the regular Sturm-Liouville system (unpublished Master thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, 1994).Google Scholar
9Huang, Y. L. and Law, C. K.. Eigenvalue ratios for the regular Sturm-Liouville system. Proc. Amer. Math. Soc. 124 (1996), 1427–36.Google Scholar
10Keller, J. B.. The minimum ratio of two eigenvalues. SIAM J. Appl. Math. 31 (1976), 485–91.Google Scholar
11Lavine, R.. The eigenvalue gap for one-dimensional convex potentials. Proc. Amer. Math. Soc. 121 (1994), 815–21.Google Scholar
12Singer, I. M., Wong, B., Yau, S. T. and Yau, S.S.-T.. An estimate of the gap of the first two eigenvalues in the Schrodinger operator. Ann. Scuola Norm. Sup. Pisa Ser. 4 12 (1985), 319–33.Google Scholar
13Yu, Q. and Zhong, J.-Q.. Lower bounds on the gaps between the first and second eigenvalues of the Schrodinger operator. Trans. Amer. Math. Soc. 294 (1986), 341–9.Google Scholar