Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T04:14:23.383Z Has data issue: false hasContentIssue false

Brownian motion on the golden ratio Sierpinski gasket

Published online by Cambridge University Press:  03 April 2023

Shiping Cao
Affiliation:
Department of Mathematics, Cornell University, Ithaca 14853, USA sc2873@cornell.edu
Hua Qiu
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, China huaqiu@nju.edu.cn

Abstract

We construct a strongly local regular Dirichlet form on the golden ratio Sierpinski gasket, which is a self-similar set without a finitely ramified cell structure, via a study on the trace of an electrical network on an infinite graph. The Dirichlet form is the unique one that is self-similar in the sense of an infinite iterated function system, and is decimation invariant with respect to a graph-directed construction. The proof is based on a fixed point problem of a renormalization map, inspired by Sabot's celebrated work for finitely ramified fractals. Lastly, the Hunt process associated with the Dirichlet form satisfies a two-sided sub-Gaussian heat kernel estimate.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aougab, T., Dong, C. S. and Strichartz, R. S.. Laplacians on a family of quadratic Julia sets II. Commun. Pure Appl. Anal. 12 (2013), 158.CrossRefGoogle Scholar
Bandt, C. and Rao, H.. Topology and separation of self-similar fractals in the plane. Nonlinearity 20 (2007), 14631474.CrossRefGoogle Scholar
Barlow, M. T.. Diffusions on fractals. Lectures on Probability Theory and Statistics, pp. 1–121 (Saint-Flour, 1995), Lecture Notes in Math., vol. 1690 (Berlin: Springer, 1998).CrossRefGoogle Scholar
Barlow, M. T. and Bass, R. F.. The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré 25 (1989), 225257.Google Scholar
Barlow, M. T. and Bass, R. F.. Transition densities for Brownian motion on the Sierpinski carpet. Probab. Theory Relat. Fields 91 (1992), 307330.CrossRefGoogle Scholar
Barlow, M. T. and Bass, R. F.. Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 51 (1999), 673744.CrossRefGoogle Scholar
Barlow, M. T., Bass, R. F., Kumagai, T. and Teplyaev, A.. Uniqueness of Brownian motion on Sierpinski carpets. J. Eur. Math. Soc. 12 (2010), 655701.Google Scholar
Barlow, M. T. and Perkins, E. A.. Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields 79 (1988), 543623.CrossRefGoogle Scholar
Cao, S. and Qiu, H.. Resistance forms on self-similar sets with finite ramification of finite type. Potential Anal. 54 (2021), 581606.CrossRefGoogle Scholar
Cao, S., Hassler, M., Qiu, H., Sandine, E. and Strichartz, R. S.. Existence and uniqueness of diffusions on the Julia sets of Misiurewicz-Sierpinski maps. Adv. Math. 389 (2021), 107922.CrossRefGoogle Scholar
Carlen, E. A., Kusuoka, S. and Stroock, D. W.. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23 (1987), 245287.Google Scholar
Fraser, J. M.. Assouad dimension and fractal geometry. Cambridge Tracts in Mathematics, vol. 222 (Cambridge: Cambridge University Press, 2021).Google Scholar
Fitzsimmons, P. J., Hambly, B. M. and Kumagai, T.. Transition density estimates for Brownian motion on affine nested fractals. Commun. Math. Phys. 165 (1994), 595620.CrossRefGoogle Scholar
Flock, T. C. and Strichartz, R. C.. Laplacians on a family of quadratic Julia sets I. Trans. Am. Math. Soc. 364 (2012), 39153965.CrossRefGoogle Scholar
Fukushima, M., Oshima, Y. and Takeda, M.. Dirichlet forms and symmetric Markov processes. Second revised and extended edn. De Gruyter Studies in Mathematics, vol. 19 (Berlin: Walter de Gruyter & Co., 2011).Google Scholar
Goldstein, S.. Random walks and diffusions on fractals. Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984–1985), IMA Vol. Math. Appl., vol. 8, pp. 121–129 (New York: Springer, 1987).CrossRefGoogle Scholar
Grigor'yan, A., Hu, J. and Lau, K.-S.. Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans. Am. Math. Soc. 355 (2003), 20652095.CrossRefGoogle Scholar
Hambly, B. M. and Kumagai, T.. Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. London Math. Soc. 78 (1999), 431458.CrossRefGoogle Scholar
Hambly, B. M. and Nyberg, S. O. G.. Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem. Proc. Edinb. Math. Soc. 46 (2003), 134.CrossRefGoogle Scholar
Kigami, J.. A harmonic calculus on the Sierpinski spaces. Jpn. J. Appl. Math. 6 (1989), 259290.CrossRefGoogle Scholar
Kigami, J.. A harmonic calculus on PCF self-similar sets. Trans. Am. Math. Soc. 335 (1993), 721755.Google Scholar
Kigami, J.. Analysis on fractals. Cambridge Tracts in Mathematics, vol. 143 (Cambridge: Cambridge University Press, 2001).Google Scholar
Kumagai, T.. Estimates of transition densities for Brownian motion on nested fractals. Probab. Theory Relat. Fields 96 (1993), 205224.CrossRefGoogle Scholar
Kusuoka, S.. A diffusion process on a fractal. In Probabilistic methods in mathematical physics, pro. taniguchi intern. symp. (Katata/Kyoto, 1985) (eds. K. Ito and N. Ikeda), pp. 251–274 (Boston: Academic Press, 1987).Google Scholar
Kusuoka, S. and Zhou, X. Y.. Dirichlet forms on fractals: Poincaré constant and resistance. Probab. Theory Relat. Fields 93 (1992), 169196.CrossRefGoogle Scholar
Lau, K.-S. and Ngai, S.-M.. A generalized finite type condition for iterated function systems. Adv. Math. 208 (2007), 647671.CrossRefGoogle Scholar
Lindstrøm, T.. Brownian motion on nested fractals. Mem. Am. Math. Soc. 83 (1990), iv+128.Google Scholar
Mauldin, D. and Williams, S.. Hausdorff dimension in graph directed constructions. Trans. Am. Math. Soc. 309 (1998), 811829.CrossRefGoogle Scholar
Metz, V.. Hilbert's projective metric on cones of Dirichlet forms. J. Funct. Anal. 127 (1995), 438455.CrossRefGoogle Scholar
Moran, M.. Hausdorff measure of infinitely generated self-similar sets. Monatsh. Math. 122 (1996), 387399.CrossRefGoogle Scholar
Ngai, S.-M. and Wang, Y.. Hausdorff dimension of self-similar sets with overlaps. J. London Math. Soc. 63 (2001), 655672.CrossRefGoogle Scholar
Rao, H. and Wen, Z.-Y.. A class of self-similar fractals with overlap structure. Adv. Appl. Math. 20 (1998), 5072.CrossRefGoogle Scholar
Rogers, L. G. and Teplyaev, A.. Laplacians on the Basilica Julia sets. Commun. Pure Appl. Anal. 9 (2010), 211231.CrossRefGoogle Scholar
Sabot, C.. Existence and uniqueness of diffusions on finitely ramified self-similar fractals (English, French summary). Ann. Sci. École Norm. Sup. 30 (1997), 605673.CrossRefGoogle Scholar
Teplyaev, A.. Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60 (2008), 457480.CrossRefGoogle Scholar