Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T08:30:22.992Z Has data issue: false hasContentIssue false

Hyperbolic phase change problems in heat conduction with memory

Published online by Cambridge University Press:  14 November 2011

Pierluigi Colli
Affiliation:
Dipartimento di Matematica, Università di Pavia, Strada Nuova 65, 27100 Pavia, Italy
Maurizio Grasselli
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy

Synopsis

The aim of this paper is to formulate and study phase transition problems in materials with memory, based on the Gurtin–Pipkin constitutive assumption on the heat flux. As different phases are involved, the internal energy is allowed to depend on the phase variable (besides the temperature) and to take its past history into account. By considering the standard equilibrium condition at the interface between two phases, we deal with a hyperbolic Stefan problem reckoning with memory effects. Then, substituting this equilibrium condition with a relaxation dynamics, we represent some dissipation phenomena including supercooling or superheating. The application of a fixed point argument helps us to show the existence and uniqueness of the solution to the latter problem (still of hyperbolic type). Hence, by introducing a suitable regularisation and taking the limit as a kinetic parameter goes to zero, we prove an existence result for the former Stefan problem. Moreover, its uniqueness is deduced by contradiction.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Baiocchi, C.. Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine in spazi di Hilbert. Ricerche Mat. 16 (1967), 2795.Google Scholar
2Baiocchi, C.. Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert. Ann. Mat. Pura Appl. (4) 76 (1967), 233304.CrossRefGoogle Scholar
3Barbu, V.. A variational inequality modeling the non Fourier melting of a solid. An. Stiinƫ. Univ. “Al. I. Cuza” laşi Şecƫ. I a Mat. (N.S.) 28 (1982), 3542.Google Scholar
4Brandon, D.. Global existence and asymptotic stability for a nonlinear integrodifferential equation modeling heat flow. SIAM J. Math. Anal. 22 (1991), 72106.CrossRefGoogle Scholar
5Brandon, D. and Hrusa, W. J.. Construction of a class of integral models for heat flow in materials with memory. J. Integral Equations Appl. 1 (1988), 175201.CrossRefGoogle Scholar
6Brézis, H.. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (Amsterdam: North-Holland, 1973).Google Scholar
7Cattaneo, C.. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83101.Google Scholar
8Chadam, J. M. and Yin, H. M.. The two-phase Stefan problem in materials with memory. In Proceedings of the Colloquium “Free boundary problems: theory and applications”, Montreal, 1990 (to appear).Google Scholar
9Chandrasekharaiah, D. S.. Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39 (1986), 355376.CrossRefGoogle Scholar
10Coleman, B. D.. Thermodynamics of materials with memory, CISM Courses and Lectures 73 (Vienna: Springer, 1971).Google Scholar
11Coleman, B. D., Fabrizio, M. and Owen, D. R.. On the thermodynamics of second sound in dielectric crystals. Arch. Rational Mech. Anal. 80 (1982), 135158.CrossRefGoogle Scholar
12Coleman, B. D. and Curtin, M. E.. Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18 (1967), 199208.CrossRefGoogle Scholar
13Coleman, B. D., Hrusa, W. J. and Owen, D. R.. Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids. Arch. Rational Mech. Anal. 94 (1986), 267289.CrossRefGoogle Scholar
14Colli, P. and Grasselli, M.. Phase transition problems in materials with memory. J. Integral Equations Appl. (in press).Google Scholar
15Colli, P. and Grasselli, M.. Phase transitions in materials with memory. In Progress in partial differential equations: calculus of variations, applications, eds. Bandle, C., Bemelmans, J., Chipot, M., Griiter, M. and Saint Jean Paulin, J., pp. 173185, Pitman Research Notes in Mathematics 267 (London: Longman, 1990).Google Scholar
16Colli, P. and Grasselli, M.. An existence result for a hyperbolic phase transition problem with memory. Appl. Math. Lett. 5 (1992), 99102.CrossRefGoogle Scholar
17Damlamian, A.. Some results on the multi-phase Stefan problem. Comm. Partial Differential Equations 2 (1977), 10171044.CrossRefGoogle Scholar
18Dautray, R. and Lions, J. L.. Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 3 (Paris: Masson, 1985).Google Scholar
19DeSocio, L. and Gualtieri, G.. A hyperbolic Stefan problem. Quart. Appl. Math. 41 (1983), 253259.CrossRefGoogle Scholar
20D'Acunto, B.. Non-Fourier ablation. Ricerche Mat. 37 (1988), 121135.Google Scholar
21Duvaut, G.. Résolution d'un problème de Stéfan. C. R. Acad. Sci. Paris Sér. A 276 (1973), 14611463.Google Scholar
22Frémond, M. and Visintin, A.. Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), 12651268.Google Scholar
23Friedman, A. and Hu, B.. The Stefan problem for a hyperbolic heat equation. J. Math. Anal. Appl. 138 (1989), 249279.CrossRefGoogle Scholar
24Grasselli, M.. An identification problem for an abstract linear integrodifferential second order equation. J. Math. Anal. Appl. (in press).Google Scholar
25Greenberg, J. M.. A hyperbolic heat transfer problem with phase changes. IMA J. Appl. Math. 38 (1987), 121.CrossRefGoogle Scholar
26Gripenberg, G., Londen, S.-O. and Staffans, O.. Vollerra integral and functional equations, Encyclopedia Math. Appl. 34 (Cambridge: Cambridge University Press, 1990).CrossRefGoogle Scholar
27Gurtin, M. E. and Pipkin, A. C.. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31 (1968), 113126.CrossRefGoogle Scholar
28Li, D.. The well-posedness of a hyperbolic Stefan problem. Quart. Appl. Math. 47 (1989), 221231.CrossRefGoogle Scholar
29Li, D., A 3-dimensional hyperbolic Stefan problem with discontinuous temperature. Quart. Appl. Math. 49 (1991), 577589.CrossRefGoogle Scholar
30Nohel, J. A.. Nonlinear Volterra equations for heat flow in materials with memory. In Integral and functional differential equations, eds. Herdman, T. L., Rankin, S. M. III and Stech, H. W., pp. 382, Lecture Notes in Pure and Appl. Math. 67 (New York: Dekker, 1981).Google Scholar
31Nunziato, J. W.. On heat conduction in materials with memory. Quart. Appl. Math. 29 (1971), 187204.CrossRefGoogle Scholar
32Showalter, R. E. and Walkington, N. J.. A hyperbolic Stefan problem. Quart. Appl. Math. 45 (1987), 769781.CrossRefGoogle Scholar
33Showalter, R. E. and Walkington, N. J.. A hyperbolic Stefan problem. In Free boundary problems: theory and applications, Vol. II, eds. Hoffmann, K. H. and Sprekels, J., pp. 840844, Pitman Research Notes in Mathematics 186 (London: Longman, 1990).Google Scholar
34Showalter, R. E. and Walkington, N. J.. A hyperbolic Stefan problem. Rocky Mountain J. Math. 21 (1991), 787797.CrossRefGoogle Scholar
35Visintin, A.. Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985), 225245.CrossRefGoogle Scholar
36Visintin, A.. Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1985), 233256.CrossRefGoogle Scholar
37Visintin, A.. On supercooling and superheating effects in phase transitions. Boll. Un. Mat. Ital. C (6) 5 (1986), 293311.Google Scholar