Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-dxj8b Total loading time: 0.333 Render date: 2023-02-01T02:16:28.595Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Finite-time blow-up in a repulsive chemotaxis-consumption system

Published online by Cambridge University Press:  06 June 2022

Yulan Wang
School of Science, Xihua University, 610039 Chengdu, China (
Michael Winkler
Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany (


In a ball $\Omega \subset \mathbb {R}^{n}$ with $n\ge 2$, the chemotaxis system

\[ \left\{ \begin{array}{@{}l} u_t = \nabla \cdot \big( D(u)\nabla u\big) + \nabla\cdot \big(\dfrac{u}{v} \nabla v\big), \\ 0=\Delta v - uv \end{array} \right. \]
is considered along with no-flux boundary conditions for $u$ and with prescribed constant positive Dirichlet boundary data for $v$. It is shown that if $D\in C^{3}([0,\infty ))$ is such that $0< D(\xi ) \le {K_D} (\xi +1)^{-\alpha }$ for all $\xi >0$ with some ${K_D}>0$ and $\alpha >0$, then for all initial data from a considerably large set of radial functions on $\Omega$, the corresponding initial-boundary value problem admits a solution blowing up in finite time.

Research Article
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Black, T.. Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D. J. Differ. Equ. 265 (2018), 22962339.CrossRefGoogle Scholar
Cao, X. and Lankeit, J.. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Part. Differ. Equ. 55 (2016), 107.CrossRefGoogle Scholar
Cieślak, T., Morales Rodrigo, C. and Laurençot, Ph., Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier–Stokes equations. Part 1, 105–117, Banach Center Publ. Vol. 81, Part 1 (Polish Acad. Sci. Inst. Math., Warsaw, 2008).CrossRefGoogle Scholar
Cieślak, T. and Stinner, C.. Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252 (2012), 58325851.CrossRefGoogle Scholar
Cieślak, T. and Winkler, M.. Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21 (2008), 10571076.CrossRefGoogle Scholar
Duan, R. J., Lorz, A. and Markowich, P. A.. Global solutions to the coupled chemotaxis-fluid equations. Comm. Partial Differ. Equ. 35 (2010), 16351673.CrossRefGoogle Scholar
Espejo, E. and Wu, H.. Optimal critical mass for the two-dimensional Keller–Segel model with rotational flux terms. Commun. Math. Sci. 18 (2020), 379394.CrossRefGoogle Scholar
Herrero, M. A. and Velázquez, J. J. L.. A blow-up mechanism for a chemotaxis model. Ann. Scu. Norm. Sup. Pisa Cl. Sci. 24 (1997), 633683.Google Scholar
Hillen, T. and Painter, K.. A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183217.CrossRefGoogle ScholarPubMed
Höfer, T., Sherratt, J. A. and Maini, P. K.. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. London B 259 (1995), 249257.Google Scholar
Jäger, W. and Luckhaus, S.. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329 (1992), 819824.CrossRefGoogle Scholar
Jiang, J., Wu, H. and Zheng, S.. Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains. Asymptot. Anal. 92 (2015), 249258.Google Scholar
Keller, E. F. and Segel, L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399415.CrossRefGoogle ScholarPubMed
Lankeit, J. Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262 (2017), 40524084.CrossRefGoogle Scholar
Lankeit, J. and Viglialoro, G.. Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity. Acta Appl. Math. 167 (2020), 7597.CrossRefGoogle Scholar
Li, G. and Winkler, M., Relaxation in a Keller–Segel-consumption system involving signal-dependent motilities. Preprint.Google Scholar
Liu, D.. Global classical solution to a chemotaxis consumption model with singular sensitivity. Nonlinear Anal. Real World Appl. 41 (2018), 497508.CrossRefGoogle Scholar
Liu, J. Large-time behavior in a two-dimensional logarithmic chemotaxis-Navier–Stokes system with signal absorption. J. Evol. Equ. 21 (2021), 51355170.CrossRefGoogle Scholar
Matsushita, M. and Fujikawa, H.. Diffusion-limited growth in bacterial colony formation. Phys. A. 168 (1990), 498506.CrossRefGoogle Scholar
Nagai, T.. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6 (2001), 3755.Google Scholar
Rosen, G.. Steady-state distribution of bacteria chemotactic toward oxygen. Bull. Math. Biol. 40 (1978), 671674.CrossRefGoogle ScholarPubMed
Tao, Y.. Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381 (2011), 521529.CrossRefGoogle Scholar
Tao, Y., Wang, L. H. and Wang, Z. A.. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 821845.Google Scholar
Tao, Y. and Winkler, M.. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252 (2012), 25202543.CrossRefGoogle Scholar
Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O. and Goldstein, R. E.. Bacterial swimming and oxygen transport near contact lines. Proc. Nat. Acad. Sci. USA 102 (2005), 22772282.CrossRefGoogle ScholarPubMed
Wang, Y., Winkler, M. and Xiang, Z.. Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption. Sci. China Math. 64 (2021), 725746.CrossRefGoogle Scholar
Wang, Z. A., Xiang, Z. and Yu, P.. Asymptotic dynamics in a singular chemotaxis system modeling onset of tumor angiogenesis. J. Differ. Equ. 260 (2016), 22252258.CrossRefGoogle Scholar
Winkler, M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100 (2013), 748767. preprint arXiv:1112.4156v1.CrossRefGoogle Scholar
Winkler, M.. Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211 (2014), 455487.CrossRefGoogle Scholar
Winkler, M.. Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47 (2015), 30923115.CrossRefGoogle Scholar
Winkler, M.. How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system?. Trans. Am. Math. Soc. 369 (2017), 30673125.CrossRefGoogle Scholar
Winkler, M. Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?. Int. Math. Res. Notices (2021). to appear Scholar
Winkler, M., Discovering unlimited growth in a chemotaxis-Navier–Stokes system via intermediate limits. Preprint.Google Scholar
Zhang, Q.. Boundedness in chemotaxis systems with rotational flux terms. Math. Nachr. 289 (2016), 23232334.CrossRefGoogle Scholar
Zhang, Q. and Li, Y.. Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant J. Math. Phys. 56 (2015), 081506.CrossRefGoogle Scholar
Zhang, Q. and Li, Y.. Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259 (2015), 37303754.CrossRefGoogle Scholar
Zhao, X. and Zheng, S.. Asymptotic behavior to a chemotaxis consumption system with singular sensitivity. Math. Meth. Appl. Sci. 41 (2018), 26152624.CrossRefGoogle Scholar
Zheng, J. and Wang, Y.. A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 669686.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Finite-time blow-up in a repulsive chemotaxis-consumption system
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Finite-time blow-up in a repulsive chemotaxis-consumption system
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Finite-time blow-up in a repulsive chemotaxis-consumption system
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *