Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jg9p7 Total loading time: 0.348 Render date: 2021-09-19T21:41:28.868Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effect of enzyme-extracted brewers’ spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis

Published online by Cambridge University Press:  24 November 2016

D.J. Crowley
Affiliation:
School of Food and Nutritional Sciences, University College Cork, Ireland
Y.C. O'Callaghan
Affiliation:
School of Food and Nutritional Sciences, University College Cork, Ireland
A. Connolly
Affiliation:
Department of Life Sciences, University of Limerick, Ireland
R.J. FitzGerald
Affiliation:
Department of Life Sciences, University of Limerick, Ireland
N.M. O'Brien
Affiliation:
School of Food and Nutritional Sciences, University College Cork, Ireland
Rights & Permissions[Opens in a new window]

Abstract

Type
Abstract
Copyright
Copyright © The Authors 2016 

Inflammation is an essential process in the body's reaction to nonlethal injury; however, excessive and uncontrolled inflammatory responses can lead to chronic diseases( Reference Chakrabarti, Jahandideh and Wu 1 ). Several peptides derived from cereal sources including brewers’ spent grain (BSG), a by-product of the brewing industry, have demonstrated anti-inflammatory effects in vitro. Research from our laboratory has previously demonstrated that alkaline-extracted BSG protein hydrolysates possess anti-inflammatory activity in human Jurkat T cells( Reference McCarthy, O'Callaghan and Connolly 2 ). The aim of this research was to investigate the ability of enzyme-extracted BSG protein hydrolysates to inhibit release of pro-inflammatory cytokines in stimulated macrophage and T lymphocyte cells.

Ten enzyme-extracted BSG protein hydrolysates (A-J) were investigated. The effect of the BSG protein hydrolysates on cell proliferation was assessed using the MTT assay and non-toxic concentrations of 0·005 % (w/v) and 0·001 % (w/v) were selected for the investigation of cytokine production in conA-stimulated Jurkat T lymphocyte cells and LPS-stimulated RAW 264·7 macrophages, respectively. Cytokine production was measured by ELISA following a 24 hour incubation with BSG protein hydrolysates.

Values are mean of three independent experiments. Statistical analysis by ANOVA followed by Dunnett's test. *Denotes significant difference (P < 0·05) in cytokine production relative to control.

BSG protein hydrolysates were more toxic in RAW 264·7 cells compared to Jurkat T cells, as determined by the MTT assay (data not shown). BSG protein hydrolysates A, H and J significantly (P < 0·05) decreased LPS-stimulated interleukin-6 (IL-6) production in RAW 264·7 cells. Hydrolysate A also significantly (P < 0·05) decreased tumor necrosis factor-α (TNF-α) production in LPS-stimulated RAW 264·7 cells, while hydrolysate J significantly (P < 0·05) inhibited IL-6 production in conA-stimulated Jurkat T cells. The results of this study suggest that selected enzyme-extracted BSG protein hydrolysates, particularly A and J, may be effective in reducing cytokine production in cells in culture and have potential to be developed as ingredients for functional foods aimed at combating chronic inflammation and related disorders such as atherosclerosis.

References

1. Chakrabarti, S, Jahandideh, F, Wu, J. (2014) Biomed Res Int 2014, 608979.CrossRefGoogle Scholar
2. McCarthy, AL, O'Callaghan, YC, Connolly, A, et al. (2013) Food Funct 4, 1709.CrossRefGoogle Scholar
Figure 0

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of enzyme-extracted brewers’ spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of enzyme-extracted brewers’ spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of enzyme-extracted brewers’ spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *