Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T13:50:40.330Z Has data issue: false hasContentIssue false

A window into the neutron star: Modelling the cooling of accretion heated neutron star crusts

Published online by Cambridge University Press:  04 June 2018

Marcella J.P. Wijngaarden
Affiliation:
Mathematical Sciences, University of Southampton, SO17 1BJ, Southampton, United Kingdom email: M.J.P.Wijngaarden@soton.ac.uk Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE, Amsterdam, the Netherlands
Rudy Wijnands
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE, Amsterdam, the Netherlands
Laura S. Ootes
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE, Amsterdam, the Netherlands
Aastha S. Parikh
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE, Amsterdam, the Netherlands
Dany Page
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City, CDMX 04510, Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In accreting neutron star X-ray transients, the neutron star crust can be substantially heated out of thermal equilibrium with the core during an accretion outburst. The observed subsequent cooling in quiescence (when accretion has halted) offers a unique opportunity to study the structure and thermal properties of the crust. Initially crust cooling modelling studies focussed on transient X-ray binaries with prolonged accretion outbursts (> 1 year) such that the crust would be significantly heated for the cooling to be detectable. Here we present the results of applying a theoretical model to the observed cooling curve after a short accretion outburst of only ~10 weeks. In our study we use the 2010 outburst of the transiently accreting 11 Hz X-ray pulsar in the globular cluster Terzan 5. Observationally it was found that the crust in this source was still hot more than 4 years after the end of its short accretion outburst. From our modelling we found that such a long-lived hot crust implies some unusual crustal properties such as a very low thermal conductivity (> 10 times lower than determined for the other crust cooling sources). In addition, we present our preliminary results of the modelling of the ongoing cooling of the neutron star in MXB 1659-298. This transient X-ray source went back into quiescence in March 2017 after an accretion phase of ~1.8 years. We compare our predictions for the cooling curve after this outburst with the cooling curve of the same source obtained after its previous outburst which ended in 2001.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Brown, E. F., Bildsten, L., & Chang, P., 2002, ApJ, 574, 920Google Scholar
Brown, E. F., & Cumming, A., 2009, ApJ, 698, 1020Google Scholar
Cackett, E. M., & Wijnands, R., et al. 2008, ApJ (Letters), 687, L87Google Scholar
Cackett, E. M., & Brown, E. F., et al. 2013, ApJ, 774, 131Google Scholar
Chabrier, G., Potekhin, A. Y., & Yakovlev, D. G., 1997, ApJ (Letters), 477, L99Google Scholar
Cumming, A., & Brown, E. F., et al. 2017, Phys. Rev. A, 95, 2Google Scholar
Degenaar, N., Brown, E. F., & Wijnands, R., 2013, MNRAS, 418, 152Google Scholar
Degenaar, N., & Wijnands, R., et al. 2013, ApJ, 775, 48Google Scholar
Degenaar, N., & Wijnands, R., et al. 2015, MNRAS, 451, 2071Google Scholar
Deibel, A., Cumming, A., Brown, E. F., & Page, D., 2015, ApJ (Letters), 809, L31Google Scholar
Deibel, A., Cumming, A., Brown, E. F., & Reddy, S., 2017, ApJ, 839, 95Google Scholar
Estradé, A., et al. 2011, Phys. Rev. Lett., 107, 17Google Scholar
Haensel, P., & Zdunik, J. L., 1990, A&A, 227, 431Google Scholar
Horowitz, C. J., Dussan, H., & Berry, D. K., 2008, Phys. Rev. Lett., 77, 2Google Scholar
Inogamov, N. A., & Sunyaev, R. A., 1999, Astron. Lett., 25, 269Google Scholar
Linares, M., Altamirano, D., Chakrabarty, D., Cumming, A., & Keek, L., 2012, ApJ, 748, 82Google Scholar
Ootes, L. S., Page, D., Wijnands, R., & Degenaar, N., 2016, MNRAS, 461, 4400CrossRefGoogle Scholar
Ootes, L. S., Wijnands, R., Page, D., & Degenaar, N., 2018, MNRAS, submittedGoogle Scholar
Page, D., 2016, ASCL, 1609, 009Google Scholar
Page, D., & Reddy, S. in Neutron Star Crust, edited by Bertulani, C. & Piekarewicz, J. 2012, Nova Science Publishers, 281Google Scholar
Page, D., & Reddy, S., 2013, Phys. Rev. Lett., 111, 24Google Scholar
Parikh, A., Wijnands, R. et al. 2017a, The Astronomer’s Telegram, 10169Google Scholar
Parikh, A., Homan, J., et al. 2017b, MNRAS, submittedGoogle Scholar
Parikh, A. et al. 2018, MNRAS, in preparationGoogle Scholar
Patruno, A., Ali Alpar, M., Van Der Klis, M., & Van Den Heuvel, E. P. J., 2012, ApJ, 752, 33Google Scholar
Rutledge, R. E., Bildsten, L., et al. 2002, ApJ, 580, 413CrossRefGoogle Scholar
Wijnands, R., Homan, J., Miller, J. M., & Lewin, W. H. G., 2004, ApJ (Letters), 606, L61Google Scholar
Wijnands, R., Degenaar, N., & Page, D., 2017, JA&A, 38, 49Google Scholar
Yakovlev, D. G., & Urpin, V. A., 1980, Soviet Astron., 24, 303Google Scholar