Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T08:56:57.809Z Has data issue: false hasContentIssue false

Warps, Waves, and Phase Spirals in the Milky Way

Published online by Cambridge University Press:  14 May 2020

Lawrence M. Widrow
Affiliation:
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada email: widrow@queensu.ca
Keir Darling
Affiliation:
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada email: widrow@queensu.ca
Haochuan Li
Affiliation:
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada email: widrow@queensu.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar disc of the Milky Way exhibits clear departures from planarity, the most conspicuous manifestation being the Galactic Warp but also includes an apparent corrugation pattern in number counts around 15kpc from the Galactic centre, a wave like pattern in the vertical velocities of stars as a function of guiding radius, asymmetries about the midplane in both number counts and bulk motions, and phase spirals in the zvz projection of the local stellar distribution function. We discuss the physics of these phenomena and, in particular, suggest a possible avenue for inferring the vertical force in the Solar Neighbourhood from phase spirals. We apply Dynamic Mode Decomposition, a technique widely used in the realm of fluid mechanics, to simulations of disc galaxy simulations. This method appears to be particularly well-suited to the study of nonlinear processes such as the coupling of warps and spirals, first discussed by Masset and Tagger.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Araki, S. 1985, Ph.D. Thesis, MITGoogle Scholar
Antoja, T., Helmi, A., Romero-Gómez, M., et al. 2018, Nature, 561, 360CrossRefGoogle Scholar
Bennett, M. & Bovy, J. 2019, MNRAS, 482, 1417CrossRefGoogle Scholar
Binney, J. 1992, ARAA, 30, 51CrossRefGoogle Scholar
Binney, J. & Schönrich, R. 2018, MNRAS, 481, 150110.1093/mnras/sty2378CrossRefGoogle Scholar
Carlin, J. L., DeLaunay, J., & Newberg, H. J., et al. 2013, ApJ Letters, 777, L5CrossRefGoogle Scholar
Carrillo, I., Minchev, I., Kordopatis, G., et al. 2018, MNRAS, 475, 2679CrossRefGoogle Scholar
Chequers, M. H. & Widrow, L. M. 2017, MNRAS, 472, 2751CrossRefGoogle Scholar
Chequers, M. H., Widrow, L. M., & Darling, K. 2018, MNRAS, 480, 4244CrossRefGoogle Scholar
Darling, K. & Widrow, L. M. 2019a, MNRAS, 484, 1050CrossRefGoogle Scholar
Darling, K. & Widrow, L. M. 2019b, MNRAS, 490, 11410.1093/mnras/stz2539CrossRefGoogle Scholar
Hunter, C. & Toomre, A. 1969, ApJ, 155, 747CrossRefGoogle Scholar
Collaboration, Gaia, Katz, D., Antoja, T., et al. 2018a, A&A, 616, A11Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2018b, A&A, 616, A1Google Scholar
Kalnajs, A. J. 1977, ApJ, 212, 63710.1086/155086CrossRefGoogle Scholar
Khoperskov, S., Di Matteo, P., Gerhard, O., et al. 2019, A&A, 622, L6Google Scholar
Kuijken, K. & Gilmore, G. 1989, MNRAS, 239, 571CrossRefGoogle Scholar
Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. 2016, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAMCrossRefGoogle Scholar
Laporte, C. F. P., Minchev, I., Johnston, K. V., et al. 2019, MNRAS, 485, 3134CrossRefGoogle Scholar
Li, Z.-Y. & Shen, J. 2019, arXiv e-prints, arXiv:1904.03314Google Scholar
Masset, F. & Tagger, M. 1997, A&A, 318, 747Google Scholar
Merritt, D. & Sellwood, J. A. 1994, ApJ, 425, 551CrossRefGoogle Scholar
Mezić, I. 2005, Nonlinear Dyn. 41, 309CrossRefGoogle Scholar
Rowley, C. W., Mezic, I., Baghrti, S., Schlatter, P., & Henningson, D. S. 2009, J. of Fluid Mech., 641, 115CrossRefGoogle Scholar
Schmid, P. J. 2010, J. of Fluid Mech., 656, 5CrossRefGoogle Scholar
Schönrich, R. & Dehnen, W. 2018, MNRAS, 478, 3809CrossRefGoogle Scholar
Sellwood, J. A. & Athanassoula, E. 1986, MNRAS, 221, 19510.1093/mnras/221.2.195CrossRefGoogle Scholar
Sellwood, J. A. 2013, Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, 923Google Scholar
Sellwood, J. A. & Carlberg, R. G. 2014, ApJ, 785, 137CrossRefGoogle Scholar
Widrow, L. M., Gardner, S., Yanny, B., et al. 2012, ApJ Letters, 750, L41CrossRefGoogle Scholar
Williams, M. E. K., Steinmetz, M., Binney, J., et al. 2013, MNRAS, 436, 10110.1093/mnras/stt1522CrossRefGoogle Scholar
Xu, Y., Newberg, H. J., Carlin, J. L., et al. 2015, ApJ, 801, 105CrossRefGoogle Scholar
Yanny, B. & Gardner, S. 2013, ApJ, 777, 91CrossRefGoogle Scholar