Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T12:53:54.270Z Has data issue: false hasContentIssue false

Unveiling the physical and chemical conditions in the young disk around L1527

Published online by Cambridge University Press:  04 September 2018

M. L. R. van ’t Hoff
Affiliation:
Leiden Observatory, Leiden University, PO box 9513, NL-2300 RA, Leiden, the Netherlands email: vthoff@strw.leidenuniv.nl
J. J. Tobin
Affiliation:
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019, USA
D. Harsono
Affiliation:
Leiden Observatory, Leiden University, PO box 9513, NL-2300 RA, Leiden, the Netherlands email: vthoff@strw.leidenuniv.nl
E. F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, PO box 9513, NL-2300 RA, Leiden, the Netherlands email: vthoff@strw.leidenuniv.nl Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planets form in disks around young stars. The planet formation process may start when the protostar and disk are still deeply embedded within their infalling envelope. However, unlike more evolved protoplanetary disks, the physical and chemical structure of these young embedded disks are still poorly constrained. We have analyzed ALMA data for 13CO, C18O and N2D+ to constrain the temperature structure, one of the critical unknowns, in the disk around L1527. The spatial distribution of 13CO and C18O, together with the kinetic temperature derived from the optically thick 13CO emission and the non-detection of N2D+, suggest that this disk is warm enough (≳ 20 K) to prevent CO freeze-out.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aikawa, Y., Furya, K., Nomura, H., & Qi, C., 2015, ApJ, 807, 120Google Scholar
ALMA Partnership, 2015, ApJ, 808, 3Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P., 2010, ApJ, 723, 1241Google Scholar
Aso, Y., Ohashi, N., Saigo, K., et al., 2015, ApJ, 812, 27Google Scholar
Dutrey, A., Henning, T., Guilloteau, S., et al., 2007, A&A, 464, 615Google Scholar
Harsono, D., Jørgensen, J. K., van Dishoeck, E. F., Hogerheijde, M. R., Bruderer, S, Persson, M. V., & Mottram, J. C., 2014, A&A, 562, A77Google Scholar
Harsono, D., Bruderer, S., & van Dishoeck, E. F., 2015, A&A, 582, A41Google Scholar
Huang, J., Öberg, K. I., Qi, C., et al., 2017, ApJ, 835, 231Google Scholar
Kwon, W., Looney, L. W., Mundy, L. G., Chiang, H.-F., & Kemball, A. J., 2009, ApJ, 696, 841Google Scholar
Miotello, A., Testi, L., Lodato, G., et al., 2014, A&A, 567, A32Google Scholar
Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D., & van Dishoeck, E. F., 2013, A&A, 560, A103Google Scholar
Öberg, K. I., Qi, C., Fogel, J. K. J., et al., 2010, ApJ, 720, 480Google Scholar
Öberg, K. I. & Bergin, E. A., 2016, ApJL, 831, L19Google Scholar
Qi, C., Öberg, K. I., Wilner, D. J., et al., 2013, Science, 341, 630Google Scholar
Qi, C., Öberg, K. I., Andrews, S. M., et al., 2015, ApJ, 813, 128Google Scholar
Schwarz, K., Bergin, E. A., Cleeves, L. I., et al., 2016, ApJ, 823, 91Google Scholar
Thi, W. F., van Zadelhoff, G. J., & van Dishoeck, E. F., 2004, A&A, 425, 955Google Scholar
Tobin, J.J., Hartmann, L., Chiang, H.-F., et al., 2012, Nature, 492, 83Google Scholar
van ’t Hoff, M. L. R., Walsh, C., Kama, M., Facchini, S., & van Dishoeck, E. F., 2017, A&A, 599, A101Google Scholar