Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T20:59:07.833Z Has data issue: false hasContentIssue false

Unveiling the kinematics of the disk and the ionized stellar wind of the massive star MWC349A through RRL masers

Published online by Cambridge University Press:  24 July 2012

Alejandro Báez-Rubio
Affiliation:
Centro de Astrobiología (CSIC-INTA), Ctra de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz, Madrid, Spain email: baezra@cab.inta-csic.es
Jesús Martín-Pintado
Affiliation:
Centro de Astrobiología (CSIC-INTA), Ctra de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz, Madrid, Spain email: jmartin@cab.inta-csic.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The kinematics of photoevaporating disks and their associated ionized outflows around massive stars are fundamental to understand how these stars are formed and they evolve in their early phases of their evolution. To date, the important advances have been provided by studying the UC-HII region of MWC349A thanks to their strong maser emission at Hydrogen radio-recombination lines (RRLs). This B[e] star is one of the best prototypes of massive star with an ionized outflow expanding at nearly constant velocity. A 3D radiative transfer model applied to the H30α line has allowed to constrain the disk kinematics, which seems to follow pure Keplerian rotation in its outer parts. The model has also allowed us to constraints the launching radius of the outflow. Our results are supported by the agreement of our model predictions with the observations for other observed RRLs. Recent high-frequency observations of RRL masers with the Herschel Space Telescope (HIFI) show that the kinematics of the disk inner regions is not well understood. Modeling of these lines will constrain the formation of the ionized winds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Churchwell, E. 1990, A&AR, 2, 79Google Scholar
Danchi, W. C., Tuthill, P. G., & Monnier, J. D. 2001, ApJ, 562, 440CrossRefGoogle Scholar
Escalante, V., Rodríguez, L. F., Moran, J. M., & Cantó, J. 1989, Rev. Mexicana AyA, 17, 11Google Scholar
Hollenbach, D., Johnstone, D., Lizano, S., & Shu, F. 1994, ApJ, 428, 654CrossRefGoogle Scholar
Jiménez-Serra, I., Martín-Pintado, J., Caselli, P., Martín, S. et al. 2009, ApJ, 703, L157CrossRefGoogle Scholar
Jiménez-Serra, I., Martín-Pintado, J., Báez-Rubio, Al. et al. , 2011 ApJ, 732, L27CrossRefGoogle Scholar
Kraus, S., Hofmann, K., Menten, K. M., Schertl, D., Weigelt, G. et al. 2010, Nature, 466, 339CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Zickgraf, F.-J., de Winter, D. et al. 1998, A&A 340, 117Google Scholar
Loinard, L. & Rodríguez, L. F. 2010 ApJ, 722, L100CrossRefGoogle Scholar
Martín-Pintado, J., Bachiller, R., Thum, C., & Walmsley, M. 1989, A&A, 215, L13Google Scholar
Martín-Pintado, J., Gaume, R., Bachiller, R., Johnston, K., & Planesas, P. 1993, ApJ, 418, L79CrossRefGoogle Scholar
Martín-Pintado, J., Neri, R., Thum, C., Planesas, P., & Bachiller, R. 1994, A&A, 286, 890Google Scholar
Martín-Pintado, J., Thum, C., Planesas, P., & Báez-Rubio, A. 2011, A&A, 530, L15Google Scholar
Storey, P. J. & Hummer, D. G. 1995, MNRAS, 272, 41CrossRefGoogle Scholar
Strelnitski, V. S., Ponomarev, V. O., & Smith, H. A. 1996, ApJ, 470, 1118CrossRefGoogle Scholar
Tafoya, D., Gómez, Y., & Rodríguez, L. F. 2004, ApJ, 610, 827CrossRefGoogle Scholar
Thum, C., Matthews, H. E., Martín-Pintado, J. et al. 1994, A&A, 283, 582Google Scholar
Thum, C., Matthews, H. E., Harris, A. H., Tacconi, L. J. et al. 1994, A&A, 288, L25Google Scholar
Thum, C., Strelnitski, V. S., Martín-Pintado, J. et al. 1995, A&A, 300, 843Google Scholar
Thum, C., Martín-Pintado, J., Quirrenbach, A. & Matthews, H. E.A&A, 333, L63Google Scholar
Walmsley, C. M. 1990, A&A, 82, 201Google Scholar