Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-06T05:06:45.758Z Has data issue: false hasContentIssue false

Tidal disruption events in galactic centers

Published online by Cambridge University Press:  22 May 2014

Resha Parajuli
Affiliation:
Clemson University email: rparaju@g.clemson.edu
Dieter H. Hartmann
Affiliation:
Clemson University email: hdieter@clemson.edu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive black holes (106–109 M) are now known to be present at the centers of most galaxies, but they are also found to have a close correlation with the host galaxy they live in. The masses of the supermasssive black holes (SMBHs) have been rigorously calculated using stellar dynamics (e.g., Gillessen et al. 2009) for the Milky Way, gas dynamics (e.g., Davis et al. 2013) for NGC 4526, water maser emissions, reverberation mapping, etc. In comparison, the mass of the SMBH seems to be tightly correlated with the galactic bulge it resides in. The tight correlation between the mass of the BH and the velocity dispersion of the stars in the bulge, known as the M-σ relation, (Ferrarese & Merritt, 2000; Tremaine et al. 2002), and the 2:1000 mass of BH - mass of bulge ratio suggests some sort of co-evolution process. A feedback driven coevolution process would suggest that the BH directly controls galaxy properties via energy and momentum feedback (Kormendy & Ho, 2013). However, since correlation does not necessarily imply causation, the evolution may be a non-causal process that occurs in tandem, where the BH and bulge grow independently. In such a process, star formation in the bulge and growth of SMBH occur in separate periods and are self regulating (Cen, 2012).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., & Ott, T. 2009, ApJ, 692, 1075CrossRefGoogle Scholar
Davis, T., Bureau, M., Cappellari, M., Sarzi, M., & Blitz, L. 2013, Nature, 494, 328Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9Google Scholar
Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J., & Richstone, D. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARAA, arXiv:1308,6483Google Scholar
Cen, R. 2012, ApJ, 755, 28Google Scholar
Gültekin, K., Richstone, D. O., Gebhardt, K., Lauer, T. R., Tremaine, S., Aller, M. C., Bender, R., Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Ho, L. C., Kormendy, J., Magorrian, J., Pinkney, J., & Siopis, C. 2009, ApJ, 698, 198Google Scholar
Lodato, G. & Rossi, E. M. 2011, MNRAS 410, 359Google Scholar
Cannizzo, J. K., Lee, H. M., & Goodman, J. 1990, ApJ 351, 38Google Scholar
Gezari, S., Basa, S., Martin, D. C., Bazin, G., Forster, K., Milliard, B., Halpern, J. P., Friedman, P. G., Morrissey, P., Neff, S. G., Schiminovich, D., Seibert, M., Small, T., & Wyder, T. K. 2008, ApJ 676, 944Google Scholar
Strubbe, L. E. & Quataert, E. 2009, MNRAS 400, 2070Google Scholar
Magorrian, J. & Tremaine, S. 1999, MNRAS 309, 447CrossRefGoogle Scholar