Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:00:35.858Z Has data issue: false hasContentIssue false

Thermal characteristics of a B8.3 flare observed on July 04, 2009

Published online by Cambridge University Press:  09 September 2016

Arun Kumar Awasthi
Affiliation:
Astronomical Institute, University of Wroclaw, Poland email: arun.awasthi.87@gmail.com
Barbara Sylwester
Affiliation:
Space Research Center of Polish Academy of Sciences, Wroclaw, Poland email: bs@cbk.pan.wroc.pl, js@cbk.pan.wroc.pl
Janusz Sylwester
Affiliation:
Space Research Center of Polish Academy of Sciences, Wroclaw, Poland email: bs@cbk.pan.wroc.pl, js@cbk.pan.wroc.pl
Rajmal Jain
Affiliation:
Kadi Sarva Vishwavidyalaya, Gandhinagar, India email: rajmal_9@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore the temporal evolution of flare plasma parameters including temperature (T) - differential emission measure (DEM) relationship by analyzing high spectral and temporal cadence of X-ray emission in 1.6-8.0 keV energy band, recorded by SphinX (Polish) and Solar X-ray Spectrometer (SOXS; Indian) instruments, during a B8.3 flare which occurred on July 04, 2009. SphinX records X-ray emission in 1.2-15.0 keV energy band with the temporal and spectral cadence as good as 6 μs and 0.4 keV, respectively. On the other hand, SOXS provides X-ray observations in 4-25 keV energy band with the temporal and spectral resolution of 3 s and 0.7 keV, respectively. We derive the thermal plasma parameters during impulsive phase of the flare employing well-established Withbroe-Sylwester DEM inversion algorithm.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Awasthi, A. K., Sylwester, B., Sylwester, J., & Jain, R. 2016, Submitted to the ApJ Google Scholar
Brown, J. C. 1971, Solar Phys., 18, 489.CrossRefGoogle Scholar
Craig, I. J. D. & Brown, J. C. 1976, A&A, 49, 239.Google Scholar
Del Zanna, G., Dere, K. P., Young, P. R., Landi, E., & Mason, H. E. 2015, A&A, 582, A56 Google Scholar
Gburek, S., Sylwester, J., Kowalinski, M., Bakala, J., Kordylewski, Z., Podgorski, P., Plocieniak, S., Siarkowski, M., Sylwester, B., Trzebinski, W., Kuzin, S. V., Pertsov, A. A., Kotov, Y. D., Farnik, F., Reale, F., & Phillips, K. J. H. 2013, Solar Phys., 283, 631.Google Scholar
Jain, R., Awasthi, A. K., Rajpurohit, A. S., & Aschwanden, M. J. 2011, Solar Phys., 270, 137.Google Scholar
Jain, R., Dave, H., Shah, A. B., Vadher, N. M., Shah, V. M., Ubale, G. P., Manian, K. S. B., Solanki, C. M., Shah, K. J., Kumar, S., Kayasth, S. L., Patel, V. D., Trivedi, J. J., & Deshpande, M. R. 2005, Solar Phys., 227, 89.Google Scholar
Kepa, A., Sylwester, B., Siarkowski, M., & Sylwester, J. 2008, Adv. Sp. Res., 42, 828.Google Scholar
Sylwester, J., Schrijver, J., & Mewe, R. 1980, Solar Phys., 67, 285 Google Scholar