Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T02:50:26.328Z Has data issue: false hasContentIssue false

Supermassive Black Hole feedback in early type galaxies

Published online by Cambridge University Press:  29 March 2021

W. Forman
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA email: wforman@cfa.harvard.edu
C. Jones
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
A. Bogdan
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
R. Kraft
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
E. Churazov
Affiliation:
Space Research Institute, Profsoyuznaya 84/32, Moscow, Russia Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, Garching, Germany
S. Randall
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
M. Sun
Affiliation:
University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama
E. O’Sullivan
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
J. Vrtilek
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
P. Nulsen
Affiliation:
SAO-CfA, 60 Garden St. Cambridge, MA, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Optically luminous early type galaxies host X-ray luminous, hot atmospheres. These hot atmospheres, which we refer to as coronae, undergo the same cooling and feedback processes as are commonly found in their more massive cousins, the gas rich atmospheres of galaxy groups and galaxy clusters. In particular, the hot coronae around galaxies radiatively cool and show cavities in X-ray images that are filled with relativistic plasma originating from jets powered by supermassive black holes (SMBH) at the galaxy centers. We discuss the SMBH feedback using an X-ray survey of early type galaxies carried out using Chandra X-ray Observatory observations. Early type galaxies with coronae very commonly have weak X-ray active nuclei and have associated radio sources. Based on the enthalpy of observed cavities in the coronae, there is sufficient energy to “balance” the observed radiative cooling. There are a very few remarkable examples of optically faint galaxies that are 1) unusually X-ray luminous, 2) have large dark matter halo masses, and 3) have large SMBHs (e.g., NGC4342 and NGC4291). These properties suggest that, in some galaxies, star formation may have been truncated at early times, breaking the simple scaling relations.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baldi, A., Forman, W., Jones, C., et al. 2009, ApJ, 707, 1034 10.1088/0004-637X/707/2/1034CrossRefGoogle Scholar
Bell, E. F., McIntosh, D. H., Katz, N., et al. 2003, ApJs, 149, 289 10.1086/378847CrossRefGoogle Scholar
Brzan, L., Rafferty, D. A., McNamara, B. R., et al. 2004, ApJ, 607, 800 10.1086/383519CrossRefGoogle Scholar
Bogdán, Á., Forman, W. R., Zhuravleva, I., et al. 2012, ApJ, 753, 140 10.1088/0004-637X/753/2/140CrossRefGoogle Scholar
Bogdán, Á., Forman, W. R., Kraft, R. P., et al. 2012, ApJ, 755, 25 10.1088/0004-637X/755/1/25CrossRefGoogle Scholar
Bogdán, Á. & Goulding, A. D. 2015, ApJ, 800, 124 10.1088/0004-637X/800/2/124CrossRefGoogle Scholar
Bogdán, Á., Lovisari, L., Volonteri, M., et al. 2018, ApJ, 852, 131 10.3847/1538-4357/aa9ab5CrossRefGoogle Scholar
Böhringer, H., Voges, W., Fabian, A., et al. 1993, Mnras, 264, L25 10.1093/mnras/264.1.L25CrossRefGoogle Scholar
Bonoli, S., Mayer, L., & Callegari, S. 2014, Mnras, 437, 1576 10.1093/mnras/stt1990CrossRefGoogle Scholar
Buote, D. A. & Barth, A. J. 2018, ApJ, 854, 143 10.3847/1538-4357/aaa971CrossRefGoogle Scholar
Buote, D. A. & Barth, A. J. 2019, ApJ, 877, 91 10.3847/1538-4357/ab1008CrossRefGoogle Scholar
Bykov, A. M., Churazov, E. M., Ferrari, C., et al. 2015,, 188, 141 10.1007/s11214-014-0129-4CrossRefGoogle Scholar
Churazov, E., Forman, W., Jones, C., et al. 2000,, 356, 788 Google Scholar
Churazov, E., Brüggen, M., Kaiser, C. R., et al. 2001, ApJ, 554, 261 10.1086/321357CrossRefGoogle Scholar
Cretton, N. & van den Bosch, F. C. 1999, ApJ, 514, 704 10.1086/306971CrossRefGoogle Scholar
Faber, S. M. & Gallagher, J. S. 1976, ApJ, 204, 365 10.1086/154180CrossRefGoogle Scholar
Fabian, A. C. & Nulsen, P. E. J. 1977, Mnras, 180, 479 10.1093/mnras/180.3.479CrossRefGoogle Scholar
Fabian, A. C. 1994, AR&AA, 32, 277 Google Scholar
Fabian, A. C., Sanders, J. S., Ettori, S., et al. 2000, Mnras, 318, L65 10.1046/j.1365-8711.2000.03904.xCrossRefGoogle Scholar
Fabian, A. C. 2012, AR&AA, 50, 455 Google Scholar
Finoguenov, A., Ruszkowski, M., Jones, C., et al. 2008, ApJ, 686, 911 10.1086/591662CrossRefGoogle Scholar
Fomalont, E. B., Ebneter, K. A., van Breugel, W. J. M., et al. 1989, ApJl, 346, L17 10.1086/185568CrossRefGoogle Scholar
Forman, W., Schwarz, J., Jones, C., et al. 1979, ApJl, 234, L27 10.1086/183103CrossRefGoogle Scholar
Forman, W., Jones, C., & Tucker, W. 1985, ApJ, 293, 102 10.1086/163218CrossRefGoogle Scholar
Forman, W., Churazov, E., Jones, C., et al. 2017, ApJ, 844, 122 10.3847/1538-4357/aa70e4CrossRefGoogle Scholar
Gaspari, M., Eckert, D., Ettori, S., et al. 2019, ApJ, 884, 169 10.3847/1538-4357/ab3c5dCrossRefGoogle Scholar
Häring, N. & Rix, H.-W. 2004, ApJl, 604, L89 10.1086/383567CrossRefGoogle Scholar
Ichimaru, S. 1977, ApJ, 214, 840 10.1086/155314CrossRefGoogle Scholar
Katz, H., Sijacki, D., & Haehnelt, M. G. 2015, Mnras, 451, 2352 10.1093/mnras/stv1048CrossRefGoogle Scholar
Lanz, L., Jones, C., Forman, W. R., et al. 2010, ApJ, 721, 1702 10.1088/0004-637X/721/2/1702CrossRefGoogle Scholar
Mackie, G. & Fabbiano, G. 1998, AJ, 115, 514 10.1086/300203CrossRefGoogle Scholar
Mathews, W. G. & Baker, J. C. 1971, ApJ, 170, 241 10.1086/151208CrossRefGoogle Scholar
McDonald, M., Bayliss, M., Benson, B. A., et al. 2012, Nature, 488, 349 10.1038/nature11379CrossRefGoogle Scholar
McNamara, B. R., Wise, M., Nulsen, P. E. J., et al. 2000, ApJl, 534, L135 10.1086/312662CrossRefGoogle Scholar
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144 10.1086/509598CrossRefGoogle Scholar
Nulsen, P. E. J., Stewart, G. C., & Fabian, A. C. 1984, Mnras, 208, 185 10.1093/mnras/208.2.185CrossRefGoogle Scholar
Nulsen, P., Jones, C., Forman, W., et al. 2009, American Institute of Physics Conference Series, 198Google Scholar
Phipps, F., Bogdán, Á., Lovisari, L., et al. 2019, ApJ, 875, 141 10.3847/1538-4357/ab107cCrossRefGoogle Scholar
Randall, S. W., Nulsen, P. E. J., Jones, C., et al. 2015, ApJ, 805, 112 10.1088/0004-637X/805/2/112CrossRefGoogle Scholar
Rees, M. J., Begelman, M. C., Blandford, R. D., et al. 1982, Nature, 295, 17 10.1038/295017a0CrossRefGoogle Scholar
Schulze, A. & Gebhardt, K. 2011, ApJ, 729, 21 10.1088/0004-637X/729/1/21CrossRefGoogle Scholar
Thomas, P. A., Fabian, A. C., Arnaud, K. A., et al. 1986, Mnras, 222, 655 10.1093/mnras/222.4.655CrossRefGoogle Scholar
Werner, N., McNamara, B. R., Churazov, E., et al. 2019,, 215, 5 10.1007/s11214-018-0571-9CrossRefGoogle Scholar
Yuan, F. & Narayan, R. 2014, AR&AA, 52, 529 Google Scholar
Zhuravleva, I., Churazov, E., Schekochihin, A. A., et al. 2014, Nature, 515, 85 10.1038/nature13830CrossRefGoogle Scholar