Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T13:27:22.664Z Has data issue: false hasContentIssue false

Sun-as-a-star observations of the 2017 August 21 solar eclipse

Published online by Cambridge University Press:  24 September 2020

Ekaterina Dineva
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: edineva@aip.de Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Carsten Denker
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: edineva@aip.de
Meetu Verma
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: edineva@aip.de
Klaus G. Strassmeier
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: edineva@aip.de Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Ilya Ilyin
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: edineva@aip.de
Ivan Milic
Affiliation:
University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, CO 80303-7814, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) is a state-of-the-art, thermally stabilized, fiber-fed, high-resolution spectrograph for the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. During daytime the instrument is fed with sunlight from the 10-millimeter aperture, fully automated, binocular Solar Disk-Integrated (SDI) telescope. The observed Sun-as-a-star spectra contain a multitude of photospheric and chromospheric spectral lines in the wavelength ranges 4200–4800 Å and 5300–6300 Å. One of the advantages of PEPSI is that solar spectra are recorded in the exactly same manner as nighttime targets. Thus, solar and stellar spectra can be directly compared. PEPSI/SDI recorded 116 Sun-as-a-star spectra during the 2017 August 21 solar eclipse. The observed maximum obscuration was 61.6%. The spectra were taken with a spectral resolution of ≈ 250000 and an exposure time of 0.3 s. The high-spectral resolution facilitates detecting subtle changes in the spectra while the Moon passes the solar disk. Sun-as-a-star spectra are affected by changing contributions due to limb darkening and solar differential rotation, and to a lesser extend by supergranular velocity pattern and the presence of active regions on the solar surface. The goal of this study is to investigate the temporal evolution of the chromospheric Na D doublet during the eclipse and to compare observations with synthetic line profiles computed with the state-of-the-art Bifrost code.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aimanova, G. K. & Gulyaev, R. A. 1976, Soviet Astron., 20, 201Google Scholar
Athay, R. G. 1976, The Solar Chromosphere and Corona: Quiet Sun, Astrophys. Space Sci. Lib., 53, D. Reidel Publishing Company, Dordrecht, HollandGoogle Scholar
Bartlett, J. L., Frouard, M. R. C., Bell, S., et al. 2019, in Celebrating the 2017 Great American Eclipse: Lessons Learned from the Path of Totality, S. R. Buxner, L. Shore, & J. B. Jensen (eds.), ASP-CS, 516, 251Google Scholar
Bazin, C. & Koutchmy, S. 2013, J. Adv. Res., 4, 307CrossRefGoogle Scholar
Beeck, B., Collet, R., Steffen, M., et al. 2012, A&A, 539, A121CrossRefGoogle Scholar
Bruls, J. H. M. J., Rutten, R. J., & Shchukina, N. G. 1992, A&A, 265, 237Google Scholar
Cauley, P. W., Kuckein, C., Redfield, S., et al. 2018, Astron. J., 156, 189CrossRefGoogle Scholar
Czesla, S., Klocová, T., Khalafinejad, S., et al. 2015, A&A, 582, A51CrossRefGoogle Scholar
Davis, S. P., Abrams, M. C., & Brault, J. W. 2001, Fourier Transform Spectrometry, Academic Press, San Diego, CaliforniaCrossRefGoogle Scholar
Denker, C. & Verma, M. 2019, SoPh, 294, 71CrossRefGoogle Scholar
Dunn, R. B., Evans, J. W., Jefferies, J. T., et al. 1968, ApJSS, 15, 275CrossRefGoogle Scholar
Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154CrossRefGoogle Scholar
Habbal, S. R., Druckmüller, M., Morgan, H., et al. 2011, ApJ, 734, 120CrossRefGoogle Scholar
Haywood, R. D., Collier Cameron, A., Unruh, Y. C., et al. 2016, MNRAS, 457, 3637CrossRefGoogle Scholar
Hill, J. M., Green, R. F., & Slagle, J. H. 2006, in Ground-based and Airborne Telescopes, L. M. Stepp (ed.), Proc. SPIE, 6267, 62670YGoogle Scholar
Izumiura, H. 1999, in Observational Astrophysics in Asia and its Future, P. S. Chen (ed.), 4, 77Google Scholar
Keller, C. U., Harvey, J. W., & Giampapa, M. S. 2003, in Innovative Telescopes and Instrumentation for Solar Astrophysics, S. L. Keil & S. V. Avakyan (eds.), Proc. SPIE, 4853, 194Google Scholar
Koutchmy, S., Baudin, F., Abdi, S., et al. 2019, A&A, in pressGoogle Scholar
Leenaarts, J., Rutten, R. J., Reardon, K., et al. 2010, ApJ, 709, 1362CrossRefGoogle Scholar
Lendl, M., Cubillos, P. E., Hagelberg, J., et al. 2017, A&A, 606, A18CrossRefGoogle Scholar
Nikolov, N., Sing, D. K., Gibson, N. P., et al. 2016, ApJ, 832, 191CrossRefGoogle Scholar
Pasachoff, J. M. 2009, Nature, 459, 789CrossRefGoogle Scholar
Pepe, F., Mayor, M., Rupprecht, G., et al. 2002, Messenger, 110, 9Google Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3CrossRefGoogle Scholar
Quirrenbach, A., Amado, P. J., Ribas, I., et al. 2018, in Ground-based and Airborne Instrumentation for Astronomy VII, C. J. Evans, L. Simard, & H. Takami (eds.), Proc. SPIE, 10702, 107020WGoogle Scholar
Reiners, A., Lemke, U., Bauer, F., et al. 2016, A&A, 595, A26CrossRefGoogle Scholar
Rutten, R. J. 2007, in The Physics of Chromospheric Plasmas, P. Heinzel, I. Dorotovič, & R. J. Rutten (eds.), ASP-CS, 368, 27Google Scholar
Saito, K. & Tandberg-Hanssen, E. 1973, SoPh, 31, 105CrossRefGoogle Scholar
Schleicher, H., Wiedemann, G., Wöhl, H., et al. 2004, A&A, 425, 1119CrossRefGoogle Scholar
Strassmeier, K. G., Ilyin, I., Järvinen, A., et al. 2015, AN, 336, 324Google Scholar
Strassmeier, K. G., Ilyin, I., & Steffen, M. 2018, A&A, 612, A44CrossRefGoogle Scholar
Takeda, Y., Ohshima, O., Kambe, E., et al. 2015, PASJ, 67, 10CrossRefGoogle Scholar
Verma, M. 2018, A&A, 612, A101CrossRefGoogle Scholar
Verma, M., Denker, C., Balthasar, H., et al. 2016, A&A, 596, A3Google Scholar
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJSS, 45, 635CrossRefGoogle Scholar
Yan, F., Fosbury, R. A. E., Petr-Gotzens, M. G., et al. 2015, A&A, 574, A94CrossRefGoogle Scholar