Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T05:29:59.686Z Has data issue: false hasContentIssue false

Sturm und Drang: The turbulent, magnetic tempest in the Galactic center

Published online by Cambridge University Press:  22 May 2014

Brian C. Lacki*
Affiliation:
Jansky Fellow of the National Radio Astronomy Observatory Institute for Advanced Study 1 Einstein Lane Princeton, NJ 08540, USA email: brianlacki@ias.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (∼ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ∼70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Chevalier, R. A. & Clegg, A. W. 1985, Nature 317, 44CrossRefGoogle Scholar
Crocker, R. M., Jones, D. I., Aharonian, F., Law, C. J., Melia, F., Oka, T., & Ott, J. 2011, MNRAS 413, 763Google Scholar
Fenech, D., Beswick, R., Muxlow, T. W. B., Pedlar, A., & Argo, M. K. 2010, MNRAS 408, 607CrossRefGoogle Scholar
Genzel, R., Burkert, A., Bouché, N., et al. 2008, ApJ 687, 59Google Scholar
Jokipii, J. R. & Morfill, G. 1987, ApJ 312, 170CrossRefGoogle Scholar
Lacki, B. C., Thompson, T. A., & Quataert, E. 2010, ApJ 717, 1Google Scholar
Lacki, B. C. 2013c, arXiv: 1308.5232Google Scholar
Lacki, B. C. 2013a, MNRAS 431, 3003Google Scholar
Lacki, B. C. 2013b, arXiv: 1304.6137Google Scholar
McKee, C. F. & Ostriker, J. P. 1977, ApJ 218, 148Google Scholar
Savage, B. D., Sembach, K. R., Wakker, B. P., et al. 2003, ApJS 146, 125CrossRefGoogle Scholar
Strickland, D. K. & Heckman, T. M. 2009, ApJ 697, 2030Google Scholar
Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ 724, 1044CrossRefGoogle Scholar
Thornton, K., Gaudlitz, M., Janka, H.-T., & Steinmetz, M. 1998, ApJ 500, 95CrossRefGoogle Scholar
Uchiyama, H., Nobukawa, M., Tsuru, T. G., & Koyama, K. 2013, PASJ 65, 19CrossRefGoogle Scholar