Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T17:44:18.299Z Has data issue: false hasContentIssue false

Statistics of white dwarf properties in intermediate polars

Published online by Cambridge University Press:  09 October 2020

Valery F. Suleimanov
Affiliation:
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D-72076, Tübingen, Germany email: suleimanov@astro.uni-tuebingen.de Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia Space Research Institute of the Russian Academy of Science, Profsoyuznaya 84/32, 117997 Moscow, Russia
Victor A. Doroshenko
Affiliation:
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D-72076, Tübingen, Germany email: suleimanov@astro.uni-tuebingen.de Space Research Institute of the Russian Academy of Science, Profsoyuznaya 84/32, 117997 Moscow, Russia
Klaus Werner
Affiliation:
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D-72076, Tübingen, Germany email: suleimanov@astro.uni-tuebingen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many intermediate polars are hard X-ray sources. The theory of their hard X-ray radiation is well developed and allows us to determine white dwarf masse in this kind of cataclysmic variables. Here we present the results of determination the masses of 35 white dwarfs in the intermediate polars observed by observatories NuSTAR (10 sources) and Swift/BAT (25 sources). The corresponding mass accrerion rates and the luminosity function were also derived due to accurate distance to the sources well known now after Gaia DR2.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aizu, K. 1973, Progr. Theor. Phys., 49, 118410.1143/PTP.49.1184CrossRefGoogle Scholar
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., et al. 2018, AJ, 156, 5810.3847/1538-3881/aacb21CrossRefGoogle Scholar
Barlow, E. J., Knigge, C., Bird, A. J. J., et al. 2006, MNRAS, 372, 22410.1111/j.1365-2966.2006.10836.xCrossRefGoogle Scholar
Bernardini, F., de Martino, D., Falanga, M., et al. 2012, Astr. and Astrophys., 542, A2210.1051/0004-6361/201219233CrossRefGoogle Scholar
Brunschweiger, J., Greiner, J., Ajello, M., & Osborne, J. 2009, Astr. and Astrophys., 496, 12110.1051/0004-6361/200811285CrossRefGoogle Scholar
Cropper, M., Wu, K., Ramsay, G., & Kocabiyik, A. 1999, MNRAS, 306, 68410.1046/j.1365-8711.1999.02570.xCrossRefGoogle Scholar
Fabian, A. C., Pringle, J. E., & Rees, M. J. 1976, MNRAS, 175, 4310.1093/mnras/175.1.43CrossRefGoogle Scholar
Gaia collabotration, 2018, Astr. and Astrophys., 616, A110.1051/0004-6361/201833051CrossRefGoogle Scholar
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 100510.1086/422091CrossRefGoogle Scholar
Harrison, F. A. et al. 2013, ApJ, 770, 10310.1088/0004-637X/770/2/103CrossRefGoogle Scholar
McKee, C. F., Parravano, A., & Hollenbach, D. J. 2015, ApJ, 814, 1310.1088/0004-637X/814/1/13CrossRefGoogle Scholar
Mukai, K. 2017, PASP, 129, 06200110.1088/1538-3873/aa6736CrossRefGoogle Scholar
Oh., K. et al. 2018, ApJS, 235, 410.3847/1538-4365/aaa7fdCrossRefGoogle Scholar
Pretorius, M. L. & Mukai, K. 2014, MNRAS, 442, 258010.1093/mnras/stu990CrossRefGoogle Scholar
Revnivtsev, M., Sazonov, S., Krivonos, R., et al. 2008, Astr. and Astrophys., 489, 112110.1051/0004-6361:200810213CrossRefGoogle Scholar
Rothschild, R. E. et al. 1981, ApJ, 250, 72310.1086/159420CrossRefGoogle Scholar
Shaw, A. W., Heinke, C.O., Mukai, K., et al. 2018, MNRAS, 476, 55410.1093/mnras/sty246CrossRefGoogle Scholar
Suleimanov, V., Revnivtsev, M., & Ritter, H. 2005, Astr. and Astrophys., 435, 19110.1051/0004-6361:20041283CrossRefGoogle Scholar
Suleimanov, V., Doroshenko, V., Ducci, L., et al. 2016, Astr. and Astrophys., 591, A3510.1051/0004-6361/201628301CrossRefGoogle Scholar
Suleimanov, V., Doroshenko, V., & Werner, K. 2019, MNRAS, 482, 362210.1093/mnras/sty2952CrossRefGoogle Scholar
Warner, B. 2003, Cataclysmic Variable Stars, Cambridge Univ. Press, Cambridge, UKGoogle Scholar
Yuasa, T., Nakazawa, K., Makishima, K., et al. 2010, Astr. and Astrophys., 520, A2510.1051/0004-6361/201014542CrossRefGoogle Scholar
Zorotovic, M., Schreiber, M. R., & Gänsicke, B. T. 2011, Astr. and Astrophys., 536, A4210.1051/0004-6361/201116626CrossRefGoogle Scholar