Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T12:50:18.761Z Has data issue: false hasContentIssue false

Spatio-temporal Characterization of Hot Chromospheric Fibrils

Published online by Cambridge University Press:  28 September 2023

Parker Lamb
Affiliation:
National Solar Observatory, Boulder, CO 80303, USA Department of Physics, University of Colorado, Boulder, CO 80309, USA
Gianna Cauzzi
Affiliation:
National Solar Observatory, Boulder, CO 80303, USA INAF – Osservatorio Astrofisico di Arcetri, 50125 Firenze, Italy
Kevin Reardon
Affiliation:
National Solar Observatory, Boulder, CO 80303, USA Department of Astrophysics and Planetary Sciences, University of Colorado, Boulder, CO 80303, USA

Abstract

The exact mechanisms leading to chromospheric heating are still ill-defined. While the presence of magnetic elements is undoubtedly necessary, the details of the heating, and its spatio-temporal distribution remain poorly understood. We contribute to this topic by analyzing the behavior of hot chromospheric fibrils surrounding network and plage elements, identified via the broader Hα profiles observed along their length; the H-α spectral line width has been shown to correlate with the local chromospheric temperatures through comparison with the ALMA millimeter-continuum brightness temperature. We make use of loop tracing and analysis software to investigate characteristics of the chromospheric hot fibrils including their length, number density, and transverse spatial extension in an enhanced network region.

Type
Poster Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschwanden, M., De Pontieu, B., & Katrukha, E. 2013, Entropy, 15, 3007 CrossRefGoogle Scholar
Beckers, J. M. 1968, Solar Physics, 3, 367 Google Scholar
Cauzzi, G., Reardon, K., Rutten, R. J., Tritschler, A., & Uitenbroek, H. 2009, A&A, 503, 577 Google Scholar
Cavallini, F. 2006, Solar Physics, 236, 415 CrossRefGoogle Scholar
Daz Baso, C. J., de la Cruz Rodrguez, J., & Leenaarts, J. 2021, A&A, 647, A188 Google Scholar
Hofmann, R. A., Reardon, K. P., Milic, I., et al. 2022, ApJ, 933, 244 CrossRefGoogle Scholar
Leenaarts, J., de la Cruz Rodrguez, J., Danilovic, S., Scharmer, G., & Carlsson, M. 2018, A&A, 612, A28 Google Scholar
Molnar, M. E., Reardon, K. P., Chai, Y., et al. 2019, ApJ, 881, 99 CrossRefGoogle Scholar
Morosin, R., de la Cruz Rodrguez, J., Daz Baso, C. J., & Leenaarts, J. 2022, A&A, 664, A8 Google Scholar
Rutten, R. J. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 354, Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ed. Leibacher, J., Stein, R. F., & Uitenbroek, H., 276 Google Scholar
Tarr, L. A., Kobelski, A. R., Jaeggli, S. A., et al. 2023, Frontiers in Astronomy and Space Sciences, 9, 978405 CrossRefGoogle Scholar
Tsiropoula, G., Tziotziou, K., Kontogiannis, I., et al. 2012, Space Science Reviews, 169, 181 CrossRefGoogle Scholar
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJs, 45, 635 CrossRefGoogle Scholar
Withbroe, G. L. & Noyes, R. W. 1977, ARA&A, 15, 363 Google Scholar
Supplementary material: PDF

Lamb et al. supplementary material

Lamb et al. supplementary material

Download Lamb et al. supplementary material(PDF)
PDF 4.6 MB