Hostname: page-component-6d856f89d9-gndc8 Total loading time: 0 Render date: 2024-07-16T08:03:22.586Z Has data issue: false hasContentIssue false

Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A

Published online by Cambridge University Press:  17 October 2017

Hans-Thomas Janka
Affiliation:
Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching, Germany email: thj@mpa-garching.mpg.de
Michael Gabler
Affiliation:
Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching, Germany email: miga@mpa-garching.mpg.de
Annop Wongwathanarat
Affiliation:
Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching, Germany email: thj@mpa-garching.mpg.de RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan email: annop.wongwathanarat@riken.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., et al. 2016, Phys. Rev. Lett., 116, 061102 Google Scholar
Antoniadis, J., et al. 2013, Science, 340, 448 Google Scholar
Arnett, D. 1967, Canadian Journal of Physics, 45, 1621 Google Scholar
Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. 1989, Ann. Rev. Astron. Astrophys., 27, 629 Google Scholar
Beck, P. G., et al. 2012, Nature, 481, 55 Google Scholar
Bethe, H. & Wilson, J. R. 1985, Astrophys. J., 295, 14 Google Scholar
Blum, K. & Kushnir, D. 2016, Astrophys. J., 828, 31 Google Scholar
Burrows, A. 2013, Rev. Mod. Phys., 85, 245 Google Scholar
Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. 2007, Astrophys. J., 664, 416 Google Scholar
Colgate, S. A. & White, R. H. 1966, Astrophys. J., 143, 626 Google Scholar
Couch, S. M. & Ott, C. D. 2013, Astrophys. J. Lett., 778, L7 Google Scholar
Couch, S. M., Chatzopoulos, E., Arnett, W. D., & Timmes, F. X. 2015, Astrophys. J. Lett., 808, L21 Google Scholar
DeLaney, T., et al. 2010, Astrophys. J., 725, 2038 Google Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081 Google Scholar
Eggenberger, P., Montalbán, J. & Miglio, A. 2012, Astron. Astrophys., 544, L4 Google Scholar
Eggenberger, P., et al. 2016, Astronomische Nachrichten, 337, 832 Google Scholar
Endeve, E., et al. 2012, Astrophys. J., 751, 26 Google Scholar
Foglizzo, T., et al. 2015, Publ. Astron. Soc. Australia, 32, e009 Google Scholar
Grefenstette, B. W., et al. 2014, Nature, 506, 339 Google Scholar
Grefenstette, B. W., et al. 2017, Astrophys. J., 834, 19 Google Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, Astrophys. J., 528, 368 Google Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, Astrophys. J., 626, 350 Google Scholar
Hwang, U. & Laming, J. M. 2012, Astrophys. J., 746, 130 Google Scholar
Janka, H.-T. 2012, Ann. Rev. Nucl. Part. Sci., 62, 407 Google Scholar
Janka, H.-T. 2017a, Astrophys. J., 837, 84 Google Scholar
Janka, H.-T. 2017b, e-print arXiv:1702.08825 Google Scholar
Janka, H.-T., Melson, T., & Summa, A. 2016, Ann. Rev. Nucl. Part. Sci, 66, 341 Google Scholar
Kawaler, S. D. 2015, ASP Conference Series, 493, p. 65; e-print arXiv:1410.6934 Google Scholar
Kazeroni, R., Guilet, J., & Foglizzo, T. 2017, eprint arXiv:1701.07029 Google Scholar
Kushnir, D. & Katz, B. 2015, Astrophys. J., 811, 97 Google Scholar
Larsson, J., et al. 2016, Astrophys. J., 833, 147 Google Scholar
Lentz, E. J., et al. 2015, Astrophys. J. Lett., 807, L31 Google Scholar
Levan, A., Crowther, P., de Grijs, R., Langer, N., Xu, D., & Yoon, S.-C. 2016, Space Science Reviews, 202, 33 Google Scholar
Melson, T., Janka, H.-T., & Marek, A. 2015, Astrophys. J. Lett., 801, L24 Google Scholar
Melson, T., Janka, H.-T., Bollig, R., Hanke, F., Marek, A., & Müller, B. 2015, Astrophys. J. Lett., 808, L42 Google Scholar
Mösta, P., et al. 2014, Astrophys. J. Lett., 785, L29 Google Scholar
Mösta, P., Ott, C. D., Radice, D., Roberts, L. F., Schnetter, E., & Haas, R. 2015, Nature, 528, 376 Google Scholar
Moiseenko, S. G. & Bisnovatyi-Kogan, G. S. 2007, Astrophys. and Space Science, 311, 191 Google Scholar
Müller, B. 2016, Publ. Astron. Soc. Australia, 33, e048 Google Scholar
Müller, B. & Janka, H.-T. 2015, Monthly Not. R. Astron. Soc., 448, 2141 Google Scholar
Obergaulinger, M. & Aloy, M. Á. 2017, eprint arXiv:1703.09893 Google Scholar
Roberts, L. F., Ott, C. D., Haas, R., O'Connor, E. P., Diener, P., & Schnetter, E. 2016, Astrophys. J., 831, 89 Google Scholar
Scheck, L., Kifonidis, K., Janka, H.-T., & Müller, E. 2006, Astron. Astrophys., 457, 963 CrossRefGoogle Scholar
Soker, N. 2017a, e-print arXiv:1702.03451 Google Scholar
Soker, N. 2017b, e-print arXiv:1703.03673 Google Scholar
Takiwaki, T., Kotake, K., & Suwa, Y. 2014, Astrophys. J., 786, 83 Google Scholar
Utrobin, V. P., Wongwathanarat, A., Janka, H.-T., & Müller, E. 2015, Astron. Astrophys., 581, A40 Google Scholar
Wilson, J. R. 1985, in: Centrella, J.M., LeBlanc, J.M. & Bowers, R.L. (eds.), Numerical Astrophysics (Boston: Jones and Bartlett Publ.), p. 422 Google Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2013, Astron. Astrophys., 552, A126 Google Scholar
Wongwathanarat, A., Müller, E., & Janka, H.-T. 2015, Astron. Astrophys., 577, A48 Google Scholar
Wongwathanarat, A., Janka, H.-T., Müller, E., Pllumni, E., & Wanajo, S. 2016, e-print arXiv:1610.05643 Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, Ann. Rev. Astron. Astrophys., 44, 507 Google Scholar