Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-29T17:24:45.507Z Has data issue: false hasContentIssue false

SPAMMS: applications and use cases for the 3D spectroscopic analysis technique to study deformed massive stars

Published online by Cambridge University Press:  29 August 2024

Michael Abdul-Masih*
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile

Abstract

Whether it be due to rapid rotation or binary interactions, deviations from spherical symmetry are common in massive stars. These deviations from spherical symmetry are known to cause non-uniform distributions of various parameters across the surface including temperature, which can drive internal mixing processes within the envelopes of these massive stars. Despite how common these 3D distortions are, they are often neglected in spectroscopic analyses. We present a new spectral analysis code called spamms (Spectroscopic PAtch Model for Massive Stars) specifically designed to analyze non-spherical systems. We discuss how the code works and discuss its assumptions. Furthermore, we demonstrate how spamms can be applied to a variety of different types of systems and we show how it can model 3D effects in a way that current analysis techniques are not able to.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Masih, M., Sana, H., Conroy, K. E., Sundqvist, J., Prša, A., Kochoska, A., & Puls, J. 2020, A&A, 636, A59 Google Scholar
Abdul-Masih, M., et al. 2019, ApJ, 880, 115 CrossRefGoogle Scholar
Abdul-Masih, M., et al. 2021, A&A, 651, A96 Google Scholar
Almeida, L. A., et al. 2015, ApJ, 812, 102 Google Scholar
Bodensteiner, J., et al. 2020, A&A, 634, A51 CrossRefGoogle Scholar
Brott, I., et al. 2011, A&A, 530, A116 CrossRefGoogle Scholar
de Mink, S. E., & Mandel, I. 2016, MNRAS, 460, 3545 Google Scholar
Fabry, M., Marchant, P., & Sana, H. 2022, A&A, 661, A123 Google Scholar
Gräfener, G., Koesterke, L., & Hamann, W. R. 2002, A&A, 387, 244 Google Scholar
Hilditch, R. W., Howarth, I. D., & Harries, T. J. 2005, MNRAS, 357, 304 Google Scholar
Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407 Google Scholar
Langer, N. 2012, ARA&A, 50, 107 CrossRefGoogle Scholar
Linder, N., Rauw, G., Sana, H., De Becker, M., & Gosset, E. 2007, A&A, 474, 193 Google Scholar
Mandel, I., & de Mink, S. E. 2016, MNRAS, 458, 2634 Google Scholar
Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., & Moriya, T. J. 2016, A&A, 588, A50 Google Scholar
Martins, F., Mahy, L., & Hervé, A. 2017, A&A, 607, A82 CrossRefGoogle Scholar
McLaughlin, D. B. 1924, ApJ, 60, 22 Google Scholar
Palate, M., & Rauw, G. 2012, A&A, 537, A119 Google Scholar
Pols, O. R. 1994, A&A, 290, 119 Google Scholar
Prša, A., et al. 2016, ApJS, 227, 29 Google Scholar
Puls, J., Urbaneja, M. A., Venero, R., Repolust, T., Springmann, U., Jokuthy, A., & Mokiem, M. R. 2005, A&A, 435, 669 Google Scholar
Ramrez-Agudelo, O. H., et al. 2015, A&A, 580, A92 Google Scholar
Rossiter, R. A. 1924, ApJ, 60, 15 Google Scholar
Sahade, J. 1959, PASP, 71, 151 Google Scholar
Sana, H., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., Röpke, F. K., Balbus, S. A., Pakmor, R., & Springel, V. 2019, Nature, 574, 211 Google Scholar
Shao, Y., & Li, X.-D. 2014, ApJ, 796, 37 Google Scholar
Struve, O. 1950, Stellar evolution, an exploration from the observatory.Google Scholar